Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
11 |
|
rngqiprngfu.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
12 |
|
rngqiprngfu.m |
⊢ − = ( -g ‘ 𝑅 ) |
13 |
|
rngqiprngfu.a |
⊢ + = ( +g ‘ 𝑅 ) |
14 |
|
rngqiprngfu.n |
⊢ 𝑈 = ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) |
15 |
|
eqid |
⊢ ( 𝑄 ×s 𝐽 ) = ( 𝑄 ×s 𝐽 ) |
16 |
15 10 4
|
xpsringd |
⊢ ( 𝜑 → ( 𝑄 ×s 𝐽 ) ∈ Ring ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
19 |
1 2 3 4 5 6 7 8 9 17 15 18
|
rngqiprngim |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) ) |
20 |
|
rngimcnv |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) → ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) ) |
22 |
|
rngisomring1 |
⊢ ( ( ( 𝑄 ×s 𝐽 ) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) ) |
23 |
16 1 21 22
|
syl3anc |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 18
|
rngqiprngfu |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ 𝑈 ) = 〈 [ 𝐸 ] ∼ , 1 〉 ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
rngqipring1 |
⊢ ( 𝜑 → ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) = 〈 [ 𝐸 ] ∼ , 1 〉 ) |
26 |
24 25
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ 𝑈 ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) |
27 |
|
eqid |
⊢ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) = ( Base ‘ ( 𝑄 ×s 𝐽 ) ) |
28 |
5 27
|
rngimf1o |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) → ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) : 𝐵 –1-1-onto→ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ) |
29 |
19 28
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) : 𝐵 –1-1-onto→ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
31 |
|
eqid |
⊢ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) |
32 |
27 31
|
ringidcl |
⊢ ( ( 𝑄 ×s 𝐽 ) ∈ Ring → ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ∈ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ) |
33 |
16 32
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ∈ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ) |
34 |
|
f1ocnvfvb |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) : 𝐵 –1-1-onto→ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ∧ 𝑈 ∈ 𝐵 ∧ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ∈ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ 𝑈 ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ↔ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) = 𝑈 ) ) |
35 |
29 30 33 34
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ 𝑈 ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ↔ ( ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) = 𝑈 ) ) |
36 |
26 35
|
mpbid |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) = 𝑈 ) |
37 |
23 36
|
eqtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = 𝑈 ) |