Metamath Proof Explorer


Theorem rngqiprngu

Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
rngqiprngfu.t · = ( .r𝑅 )
rngqiprngfu.1 1 = ( 1r𝐽 )
rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
rngqiprngfu.q 𝑄 = ( 𝑅 /s )
rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
rngqiprngfu.m = ( -g𝑅 )
rngqiprngfu.a + = ( +g𝑅 )
rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
Assertion rngqiprngu ( 𝜑 → ( 1r𝑅 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
2 rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
4 rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
5 rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
6 rngqiprngfu.t · = ( .r𝑅 )
7 rngqiprngfu.1 1 = ( 1r𝐽 )
8 rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngfu.q 𝑄 = ( 𝑅 /s )
10 rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
11 rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
12 rngqiprngfu.m = ( -g𝑅 )
13 rngqiprngfu.a + = ( +g𝑅 )
14 rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
15 eqid ( 𝑄 ×s 𝐽 ) = ( 𝑄 ×s 𝐽 )
16 15 10 4 xpsringd ( 𝜑 → ( 𝑄 ×s 𝐽 ) ∈ Ring )
17 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
18 eqid ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
19 1 2 3 4 5 6 7 8 9 17 15 18 rngqiprngim ( 𝜑 → ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) )
20 rngimcnv ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) → ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) )
21 19 20 syl ( 𝜑 ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) )
22 rngisomring1 ( ( ( 𝑄 ×s 𝐽 ) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ∈ ( ( 𝑄 ×s 𝐽 ) RngIso 𝑅 ) ) → ( 1r𝑅 ) = ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) )
23 16 1 21 22 syl3anc ( 𝜑 → ( 1r𝑅 ) = ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) )
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 rngqiprngfu ( 𝜑 → ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ 𝑈 ) = ⟨ [ 𝐸 ] , 1 ⟩ )
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rngqipring1 ( 𝜑 → ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) = ⟨ [ 𝐸 ] , 1 ⟩ )
26 24 25 eqtr4d ( 𝜑 → ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ 𝑈 ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) )
27 eqid ( Base ‘ ( 𝑄 ×s 𝐽 ) ) = ( Base ‘ ( 𝑄 ×s 𝐽 ) )
28 5 27 rngimf1o ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ∈ ( 𝑅 RngIso ( 𝑄 ×s 𝐽 ) ) → ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) : 𝐵1-1-onto→ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) )
29 19 28 syl ( 𝜑 → ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) : 𝐵1-1-onto→ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) )
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 ( 𝜑𝑈𝐵 )
31 eqid ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) )
32 27 31 ringidcl ( ( 𝑄 ×s 𝐽 ) ∈ Ring → ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ∈ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) )
33 16 32 syl ( 𝜑 → ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ∈ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) )
34 f1ocnvfvb ( ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) : 𝐵1-1-onto→ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ∧ 𝑈𝐵 ∧ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ∈ ( Base ‘ ( 𝑄 ×s 𝐽 ) ) ) → ( ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ 𝑈 ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ↔ ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) = 𝑈 ) )
35 29 30 33 34 syl3anc ( 𝜑 → ( ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ 𝑈 ) = ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ↔ ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) = 𝑈 ) )
36 26 35 mpbid ( 𝜑 → ( ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) ‘ ( 1r ‘ ( 𝑄 ×s 𝐽 ) ) ) = 𝑈 )
37 23 36 eqtrd ( 𝜑 → ( 1r𝑅 ) = 𝑈 )