Metamath Proof Explorer


Theorem rngqiprngfulem3

Description: Lemma 3 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
rngqiprngfu.t · = ( .r𝑅 )
rngqiprngfu.1 1 = ( 1r𝐽 )
rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
rngqiprngfu.q 𝑄 = ( 𝑅 /s )
rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
rngqiprngfu.m = ( -g𝑅 )
rngqiprngfu.a + = ( +g𝑅 )
rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
Assertion rngqiprngfulem3 ( 𝜑𝑈𝐵 )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
2 rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
4 rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
5 rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
6 rngqiprngfu.t · = ( .r𝑅 )
7 rngqiprngfu.1 1 = ( 1r𝐽 )
8 rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngfu.q 𝑄 = ( 𝑅 /s )
10 rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
11 rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
12 rngqiprngfu.m = ( -g𝑅 )
13 rngqiprngfu.a + = ( +g𝑅 )
14 rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
15 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
16 1 15 syl ( 𝜑𝑅 ∈ Grp )
17 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2 ( 𝜑𝐸𝐵 )
18 1 2 3 4 5 6 7 rngqiprng1elbas ( 𝜑1𝐵 )
19 5 6 rngcl ( ( 𝑅 ∈ Rng ∧ 1𝐵𝐸𝐵 ) → ( 1 · 𝐸 ) ∈ 𝐵 )
20 1 18 17 19 syl3anc ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐵 )
21 5 12 grpsubcl ( ( 𝑅 ∈ Grp ∧ 𝐸𝐵 ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( 𝐸 ( 1 · 𝐸 ) ) ∈ 𝐵 )
22 16 17 20 21 syl3anc ( 𝜑 → ( 𝐸 ( 1 · 𝐸 ) ) ∈ 𝐵 )
23 5 13 16 22 18 grpcld ( 𝜑 → ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) ∈ 𝐵 )
24 14 23 eqeltrid ( 𝜑𝑈𝐵 )