Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
11 |
|
rngqiprngfu.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
12 |
|
rngqiprngfu.m |
⊢ − = ( -g ‘ 𝑅 ) |
13 |
|
rngqiprngfu.a |
⊢ + = ( +g ‘ 𝑅 ) |
14 |
|
rngqiprngfu.n |
⊢ 𝑈 = ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) |
15 |
|
rngqiprngfu.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
18 |
|
eqid |
⊢ ( 𝑄 ×s 𝐽 ) = ( 𝑄 ×s 𝐽 ) |
19 |
1 2 3 4 5 6 7 8 9 17 18 15
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑈 ) = 〈 [ 𝑈 ] ∼ , ( 1 · 𝑈 ) 〉 ) |
20 |
16 19
|
mpdan |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) = 〈 [ 𝑈 ] ∼ , ( 1 · 𝑈 ) 〉 ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem4 |
⊢ ( 𝜑 → [ 𝑈 ] ∼ = [ 𝐸 ] ∼ ) |
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem5 |
⊢ ( 𝜑 → ( 1 · 𝑈 ) = 1 ) |
23 |
21 22
|
opeq12d |
⊢ ( 𝜑 → 〈 [ 𝑈 ] ∼ , ( 1 · 𝑈 ) 〉 = 〈 [ 𝐸 ] ∼ , 1 〉 ) |
24 |
20 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) = 〈 [ 𝐸 ] ∼ , 1 〉 ) |