Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
15 |
|
rngqiprngfu.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
|- ( ph -> U e. B ) |
17 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
18 |
|
eqid |
|- ( Q Xs. J ) = ( Q Xs. J ) |
19 |
1 2 3 4 5 6 7 8 9 17 18 15
|
rngqiprngimfv |
|- ( ( ph /\ U e. B ) -> ( F ` U ) = <. [ U ] .~ , ( .1. .x. U ) >. ) |
20 |
16 19
|
mpdan |
|- ( ph -> ( F ` U ) = <. [ U ] .~ , ( .1. .x. U ) >. ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem4 |
|- ( ph -> [ U ] .~ = [ E ] .~ ) |
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem5 |
|- ( ph -> ( .1. .x. U ) = .1. ) |
23 |
21 22
|
opeq12d |
|- ( ph -> <. [ U ] .~ , ( .1. .x. U ) >. = <. [ E ] .~ , .1. >. ) |
24 |
20 23
|
eqtrd |
|- ( ph -> ( F ` U ) = <. [ E ] .~ , .1. >. ) |