Metamath Proof Explorer


Theorem rngqiprngfu

Description: The function value of F at the constructed expected ring unity of R is the ring unity of the product of the quotient with the two-sided ideal and the two-sided ideal. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r
|- ( ph -> R e. Rng )
rngqiprngfu.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngqiprngfu.j
|- J = ( R |`s I )
rngqiprngfu.u
|- ( ph -> J e. Ring )
rngqiprngfu.b
|- B = ( Base ` R )
rngqiprngfu.t
|- .x. = ( .r ` R )
rngqiprngfu.1
|- .1. = ( 1r ` J )
rngqiprngfu.g
|- .~ = ( R ~QG I )
rngqiprngfu.q
|- Q = ( R /s .~ )
rngqiprngfu.v
|- ( ph -> Q e. Ring )
rngqiprngfu.e
|- ( ph -> E e. ( 1r ` Q ) )
rngqiprngfu.m
|- .- = ( -g ` R )
rngqiprngfu.a
|- .+ = ( +g ` R )
rngqiprngfu.n
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
rngqiprngfu.f
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
Assertion rngqiprngfu
|- ( ph -> ( F ` U ) = <. [ E ] .~ , .1. >. )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r
 |-  ( ph -> R e. Rng )
2 rngqiprngfu.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rngqiprngfu.j
 |-  J = ( R |`s I )
4 rngqiprngfu.u
 |-  ( ph -> J e. Ring )
5 rngqiprngfu.b
 |-  B = ( Base ` R )
6 rngqiprngfu.t
 |-  .x. = ( .r ` R )
7 rngqiprngfu.1
 |-  .1. = ( 1r ` J )
8 rngqiprngfu.g
 |-  .~ = ( R ~QG I )
9 rngqiprngfu.q
 |-  Q = ( R /s .~ )
10 rngqiprngfu.v
 |-  ( ph -> Q e. Ring )
11 rngqiprngfu.e
 |-  ( ph -> E e. ( 1r ` Q ) )
12 rngqiprngfu.m
 |-  .- = ( -g ` R )
13 rngqiprngfu.a
 |-  .+ = ( +g ` R )
14 rngqiprngfu.n
 |-  U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
15 rngqiprngfu.f
 |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3
 |-  ( ph -> U e. B )
17 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
18 eqid
 |-  ( Q Xs. J ) = ( Q Xs. J )
19 1 2 3 4 5 6 7 8 9 17 18 15 rngqiprngimfv
 |-  ( ( ph /\ U e. B ) -> ( F ` U ) = <. [ U ] .~ , ( .1. .x. U ) >. )
20 16 19 mpdan
 |-  ( ph -> ( F ` U ) = <. [ U ] .~ , ( .1. .x. U ) >. )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem4
 |-  ( ph -> [ U ] .~ = [ E ] .~ )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem5
 |-  ( ph -> ( .1. .x. U ) = .1. )
23 21 22 opeq12d
 |-  ( ph -> <. [ U ] .~ , ( .1. .x. U ) >. = <. [ E ] .~ , .1. >. )
24 20 23 eqtrd
 |-  ( ph -> ( F ` U ) = <. [ E ] .~ , .1. >. )