| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
| 4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
| 6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
| 11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
| 12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
| 13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
| 14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
| 15 |
|
rngqiprngfu.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
|- ( ph -> U e. B ) |
| 17 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 18 |
|
eqid |
|- ( Q Xs. J ) = ( Q Xs. J ) |
| 19 |
1 2 3 4 5 6 7 8 9 17 18 15
|
rngqiprngimfv |
|- ( ( ph /\ U e. B ) -> ( F ` U ) = <. [ U ] .~ , ( .1. .x. U ) >. ) |
| 20 |
16 19
|
mpdan |
|- ( ph -> ( F ` U ) = <. [ U ] .~ , ( .1. .x. U ) >. ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem4 |
|- ( ph -> [ U ] .~ = [ E ] .~ ) |
| 22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem5 |
|- ( ph -> ( .1. .x. U ) = .1. ) |
| 23 |
21 22
|
opeq12d |
|- ( ph -> <. [ U ] .~ , ( .1. .x. U ) >. = <. [ E ] .~ , .1. >. ) |
| 24 |
20 23
|
eqtrd |
|- ( ph -> ( F ` U ) = <. [ E ] .~ , .1. >. ) |