| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
| 4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
| 6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
| 11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
| 12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
| 13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
| 14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
| 15 |
|
eqid |
|- ( Q Xs. J ) = ( Q Xs. J ) |
| 16 |
15 10 4
|
xpsringd |
|- ( ph -> ( Q Xs. J ) e. Ring ) |
| 17 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 18 |
|
eqid |
|- ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
| 19 |
1 2 3 4 5 6 7 8 9 17 15 18
|
rngqiprngim |
|- ( ph -> ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( R RngIso ( Q Xs. J ) ) ) |
| 20 |
|
rngimcnv |
|- ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( R RngIso ( Q Xs. J ) ) -> `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) |
| 22 |
|
rngisomring1 |
|- ( ( ( Q Xs. J ) e. Ring /\ R e. Rng /\ `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) -> ( 1r ` R ) = ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) ) |
| 23 |
16 1 21 22
|
syl3anc |
|- ( ph -> ( 1r ` R ) = ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) ) |
| 24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 18
|
rngqiprngfu |
|- ( ph -> ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = <. [ E ] .~ , .1. >. ) |
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
rngqipring1 |
|- ( ph -> ( 1r ` ( Q Xs. J ) ) = <. [ E ] .~ , .1. >. ) |
| 26 |
24 25
|
eqtr4d |
|- ( ph -> ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = ( 1r ` ( Q Xs. J ) ) ) |
| 27 |
|
eqid |
|- ( Base ` ( Q Xs. J ) ) = ( Base ` ( Q Xs. J ) ) |
| 28 |
5 27
|
rngimf1o |
|- ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( R RngIso ( Q Xs. J ) ) -> ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) : B -1-1-onto-> ( Base ` ( Q Xs. J ) ) ) |
| 29 |
19 28
|
syl |
|- ( ph -> ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) : B -1-1-onto-> ( Base ` ( Q Xs. J ) ) ) |
| 30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
|- ( ph -> U e. B ) |
| 31 |
|
eqid |
|- ( 1r ` ( Q Xs. J ) ) = ( 1r ` ( Q Xs. J ) ) |
| 32 |
27 31
|
ringidcl |
|- ( ( Q Xs. J ) e. Ring -> ( 1r ` ( Q Xs. J ) ) e. ( Base ` ( Q Xs. J ) ) ) |
| 33 |
16 32
|
syl |
|- ( ph -> ( 1r ` ( Q Xs. J ) ) e. ( Base ` ( Q Xs. J ) ) ) |
| 34 |
|
f1ocnvfvb |
|- ( ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) : B -1-1-onto-> ( Base ` ( Q Xs. J ) ) /\ U e. B /\ ( 1r ` ( Q Xs. J ) ) e. ( Base ` ( Q Xs. J ) ) ) -> ( ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = ( 1r ` ( Q Xs. J ) ) <-> ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) = U ) ) |
| 35 |
29 30 33 34
|
syl3anc |
|- ( ph -> ( ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = ( 1r ` ( Q Xs. J ) ) <-> ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) = U ) ) |
| 36 |
26 35
|
mpbid |
|- ( ph -> ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) = U ) |
| 37 |
23 36
|
eqtrd |
|- ( ph -> ( 1r ` R ) = U ) |