Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
15 |
|
eqid |
|- ( Q Xs. J ) = ( Q Xs. J ) |
16 |
15 10 4
|
xpsringd |
|- ( ph -> ( Q Xs. J ) e. Ring ) |
17 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
18 |
|
eqid |
|- ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
19 |
1 2 3 4 5 6 7 8 9 17 15 18
|
rngqiprngim |
|- ( ph -> ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( R RngIso ( Q Xs. J ) ) ) |
20 |
|
rngimcnv |
|- ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( R RngIso ( Q Xs. J ) ) -> `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) |
21 |
19 20
|
syl |
|- ( ph -> `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) |
22 |
|
rngisomring1 |
|- ( ( ( Q Xs. J ) e. Ring /\ R e. Rng /\ `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( ( Q Xs. J ) RngIso R ) ) -> ( 1r ` R ) = ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) ) |
23 |
16 1 21 22
|
syl3anc |
|- ( ph -> ( 1r ` R ) = ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 18
|
rngqiprngfu |
|- ( ph -> ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = <. [ E ] .~ , .1. >. ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
rngqipring1 |
|- ( ph -> ( 1r ` ( Q Xs. J ) ) = <. [ E ] .~ , .1. >. ) |
26 |
24 25
|
eqtr4d |
|- ( ph -> ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = ( 1r ` ( Q Xs. J ) ) ) |
27 |
|
eqid |
|- ( Base ` ( Q Xs. J ) ) = ( Base ` ( Q Xs. J ) ) |
28 |
5 27
|
rngimf1o |
|- ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) e. ( R RngIso ( Q Xs. J ) ) -> ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) : B -1-1-onto-> ( Base ` ( Q Xs. J ) ) ) |
29 |
19 28
|
syl |
|- ( ph -> ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) : B -1-1-onto-> ( Base ` ( Q Xs. J ) ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
|- ( ph -> U e. B ) |
31 |
|
eqid |
|- ( 1r ` ( Q Xs. J ) ) = ( 1r ` ( Q Xs. J ) ) |
32 |
27 31
|
ringidcl |
|- ( ( Q Xs. J ) e. Ring -> ( 1r ` ( Q Xs. J ) ) e. ( Base ` ( Q Xs. J ) ) ) |
33 |
16 32
|
syl |
|- ( ph -> ( 1r ` ( Q Xs. J ) ) e. ( Base ` ( Q Xs. J ) ) ) |
34 |
|
f1ocnvfvb |
|- ( ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) : B -1-1-onto-> ( Base ` ( Q Xs. J ) ) /\ U e. B /\ ( 1r ` ( Q Xs. J ) ) e. ( Base ` ( Q Xs. J ) ) ) -> ( ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = ( 1r ` ( Q Xs. J ) ) <-> ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) = U ) ) |
35 |
29 30 33 34
|
syl3anc |
|- ( ph -> ( ( ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` U ) = ( 1r ` ( Q Xs. J ) ) <-> ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) = U ) ) |
36 |
26 35
|
mpbid |
|- ( ph -> ( `' ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ` ( 1r ` ( Q Xs. J ) ) ) = U ) |
37 |
23 36
|
eqtrd |
|- ( ph -> ( 1r ` R ) = U ) |