| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
| 4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
| 6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
| 11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
| 12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
| 13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
| 14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
| 15 |
|
rngqipring1.p |
|- P = ( Q Xs. J ) |
| 16 |
15 10 4
|
xpsring1d |
|- ( ph -> ( 1r ` P ) = <. ( 1r ` Q ) , ( 1r ` J ) >. ) |
| 17 |
11
|
adantr |
|- ( ( ph /\ x e. B ) -> E e. ( 1r ` Q ) ) |
| 18 |
|
eleq2 |
|- ( ( 1r ` Q ) = [ x ] .~ -> ( E e. ( 1r ` Q ) <-> E e. [ x ] .~ ) ) |
| 19 |
18
|
adantl |
|- ( ( ( ph /\ x e. B ) /\ ( 1r ` Q ) = [ x ] .~ ) -> ( E e. ( 1r ` Q ) <-> E e. [ x ] .~ ) ) |
| 20 |
|
elecg |
|- ( ( E e. ( 1r ` Q ) /\ x e. B ) -> ( E e. [ x ] .~ <-> x .~ E ) ) |
| 21 |
11 20
|
sylan |
|- ( ( ph /\ x e. B ) -> ( E e. [ x ] .~ <-> x .~ E ) ) |
| 22 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
| 23 |
4 22
|
syl |
|- ( ph -> J e. Rng ) |
| 24 |
3 23
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
| 25 |
1 2 24
|
rng2idlnsg |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
| 26 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
| 27 |
25 26
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ x e. B ) -> I e. ( SubGrp ` R ) ) |
| 29 |
5 8
|
eqger |
|- ( I e. ( SubGrp ` R ) -> .~ Er B ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ x e. B ) -> .~ Er B ) |
| 31 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 32 |
30 31
|
erth |
|- ( ( ph /\ x e. B ) -> ( x .~ E <-> [ x ] .~ = [ E ] .~ ) ) |
| 33 |
32
|
biimpa |
|- ( ( ( ph /\ x e. B ) /\ x .~ E ) -> [ x ] .~ = [ E ] .~ ) |
| 34 |
33
|
eqcomd |
|- ( ( ( ph /\ x e. B ) /\ x .~ E ) -> [ E ] .~ = [ x ] .~ ) |
| 35 |
34
|
ex |
|- ( ( ph /\ x e. B ) -> ( x .~ E -> [ E ] .~ = [ x ] .~ ) ) |
| 36 |
21 35
|
sylbid |
|- ( ( ph /\ x e. B ) -> ( E e. [ x ] .~ -> [ E ] .~ = [ x ] .~ ) ) |
| 37 |
36
|
adantr |
|- ( ( ( ph /\ x e. B ) /\ ( 1r ` Q ) = [ x ] .~ ) -> ( E e. [ x ] .~ -> [ E ] .~ = [ x ] .~ ) ) |
| 38 |
19 37
|
sylbid |
|- ( ( ( ph /\ x e. B ) /\ ( 1r ` Q ) = [ x ] .~ ) -> ( E e. ( 1r ` Q ) -> [ E ] .~ = [ x ] .~ ) ) |
| 39 |
38
|
ex |
|- ( ( ph /\ x e. B ) -> ( ( 1r ` Q ) = [ x ] .~ -> ( E e. ( 1r ` Q ) -> [ E ] .~ = [ x ] .~ ) ) ) |
| 40 |
17 39
|
mpid |
|- ( ( ph /\ x e. B ) -> ( ( 1r ` Q ) = [ x ] .~ -> [ E ] .~ = [ x ] .~ ) ) |
| 41 |
40
|
imp |
|- ( ( ( ph /\ x e. B ) /\ ( 1r ` Q ) = [ x ] .~ ) -> [ E ] .~ = [ x ] .~ ) |
| 42 |
|
simpr |
|- ( ( ( ph /\ x e. B ) /\ ( 1r ` Q ) = [ x ] .~ ) -> ( 1r ` Q ) = [ x ] .~ ) |
| 43 |
41 42
|
eqtr4d |
|- ( ( ( ph /\ x e. B ) /\ ( 1r ` Q ) = [ x ] .~ ) -> [ E ] .~ = ( 1r ` Q ) ) |
| 44 |
1 2 3 4 5 6 7 8 9 10
|
rngqiprngfulem1 |
|- ( ph -> E. x e. B ( 1r ` Q ) = [ x ] .~ ) |
| 45 |
43 44
|
r19.29a |
|- ( ph -> [ E ] .~ = ( 1r ` Q ) ) |
| 46 |
45
|
eqcomd |
|- ( ph -> ( 1r ` Q ) = [ E ] .~ ) |
| 47 |
7
|
eqcomi |
|- ( 1r ` J ) = .1. |
| 48 |
47
|
a1i |
|- ( ph -> ( 1r ` J ) = .1. ) |
| 49 |
46 48
|
opeq12d |
|- ( ph -> <. ( 1r ` Q ) , ( 1r ` J ) >. = <. [ E ] .~ , .1. >. ) |
| 50 |
16 49
|
eqtrd |
|- ( ph -> ( 1r ` P ) = <. [ E ] .~ , .1. >. ) |