| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
|
| 2 |
|
rngqiprngfu.i |
|
| 3 |
|
rngqiprngfu.j |
|
| 4 |
|
rngqiprngfu.u |
|
| 5 |
|
rngqiprngfu.b |
|
| 6 |
|
rngqiprngfu.t |
|
| 7 |
|
rngqiprngfu.1 |
|
| 8 |
|
rngqiprngfu.g |
|
| 9 |
|
rngqiprngfu.q |
|
| 10 |
|
rngqiprngfu.v |
|
| 11 |
|
rngqiprngfu.e |
|
| 12 |
|
rngqiprngfu.m |
|
| 13 |
|
rngqiprngfu.a |
|
| 14 |
|
rngqiprngfu.n |
|
| 15 |
|
rngqipring1.p |
|
| 16 |
15 10 4
|
xpsring1d |
|
| 17 |
11
|
adantr |
|
| 18 |
|
eleq2 |
|
| 19 |
18
|
adantl |
|
| 20 |
|
elecg |
|
| 21 |
11 20
|
sylan |
|
| 22 |
|
ringrng |
|
| 23 |
4 22
|
syl |
|
| 24 |
3 23
|
eqeltrrid |
|
| 25 |
1 2 24
|
rng2idlnsg |
|
| 26 |
|
nsgsubg |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
adantr |
|
| 29 |
5 8
|
eqger |
|
| 30 |
28 29
|
syl |
|
| 31 |
|
simpr |
|
| 32 |
30 31
|
erth |
|
| 33 |
32
|
biimpa |
|
| 34 |
33
|
eqcomd |
|
| 35 |
34
|
ex |
|
| 36 |
21 35
|
sylbid |
|
| 37 |
36
|
adantr |
|
| 38 |
19 37
|
sylbid |
|
| 39 |
38
|
ex |
|
| 40 |
17 39
|
mpid |
|
| 41 |
40
|
imp |
|
| 42 |
|
simpr |
|
| 43 |
41 42
|
eqtr4d |
|
| 44 |
1 2 3 4 5 6 7 8 9 10
|
rngqiprngfulem1 |
|
| 45 |
43 44
|
r19.29a |
|
| 46 |
45
|
eqcomd |
|
| 47 |
7
|
eqcomi |
|
| 48 |
47
|
a1i |
|
| 49 |
46 48
|
opeq12d |
|
| 50 |
16 49
|
eqtrd |
|