Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
|
2 |
|
rngqiprngfu.i |
|
3 |
|
rngqiprngfu.j |
|
4 |
|
rngqiprngfu.u |
|
5 |
|
rngqiprngfu.b |
|
6 |
|
rngqiprngfu.t |
|
7 |
|
rngqiprngfu.1 |
|
8 |
|
rngqiprngfu.g |
|
9 |
|
rngqiprngfu.q |
|
10 |
|
rngqiprngfu.v |
|
11 |
|
rngqiprngfu.e |
|
12 |
|
rngqiprngfu.m |
|
13 |
|
rngqiprngfu.a |
|
14 |
|
rngqiprngfu.n |
|
15 |
|
rngqipring1.p |
|
16 |
15 10 4
|
xpsring1d |
|
17 |
11
|
adantr |
|
18 |
|
eleq2 |
|
19 |
18
|
adantl |
|
20 |
|
elecg |
|
21 |
11 20
|
sylan |
|
22 |
|
ringrng |
|
23 |
4 22
|
syl |
|
24 |
3 23
|
eqeltrrid |
|
25 |
1 2 24
|
rng2idlnsg |
|
26 |
|
nsgsubg |
|
27 |
25 26
|
syl |
|
28 |
27
|
adantr |
|
29 |
5 8
|
eqger |
|
30 |
28 29
|
syl |
|
31 |
|
simpr |
|
32 |
30 31
|
erth |
|
33 |
32
|
biimpa |
|
34 |
33
|
eqcomd |
|
35 |
34
|
ex |
|
36 |
21 35
|
sylbid |
|
37 |
36
|
adantr |
|
38 |
19 37
|
sylbid |
|
39 |
38
|
ex |
|
40 |
17 39
|
mpid |
|
41 |
40
|
imp |
|
42 |
|
simpr |
|
43 |
41 42
|
eqtr4d |
|
44 |
1 2 3 4 5 6 7 8 9 10
|
rngqiprngfulem1 |
|
45 |
43 44
|
r19.29a |
|
46 |
45
|
eqcomd |
|
47 |
7
|
eqcomi |
|
48 |
47
|
a1i |
|
49 |
46 48
|
opeq12d |
|
50 |
16 49
|
eqtrd |
|