Metamath Proof Explorer


Theorem rngqipring1

Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φ R Rng
rngqiprngfu.i φ I 2Ideal R
rngqiprngfu.j J = R 𝑠 I
rngqiprngfu.u φ J Ring
rngqiprngfu.b B = Base R
rngqiprngfu.t · ˙ = R
rngqiprngfu.1 1 ˙ = 1 J
rngqiprngfu.g ˙ = R ~ QG I
rngqiprngfu.q Q = R / 𝑠 ˙
rngqiprngfu.v φ Q Ring
rngqiprngfu.e φ E 1 Q
rngqiprngfu.m - ˙ = - R
rngqiprngfu.a + ˙ = + R
rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
rngqipring1.p P = Q × 𝑠 J
Assertion rngqipring1 φ 1 P = E ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φ R Rng
2 rngqiprngfu.i φ I 2Ideal R
3 rngqiprngfu.j J = R 𝑠 I
4 rngqiprngfu.u φ J Ring
5 rngqiprngfu.b B = Base R
6 rngqiprngfu.t · ˙ = R
7 rngqiprngfu.1 1 ˙ = 1 J
8 rngqiprngfu.g ˙ = R ~ QG I
9 rngqiprngfu.q Q = R / 𝑠 ˙
10 rngqiprngfu.v φ Q Ring
11 rngqiprngfu.e φ E 1 Q
12 rngqiprngfu.m - ˙ = - R
13 rngqiprngfu.a + ˙ = + R
14 rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
15 rngqipring1.p P = Q × 𝑠 J
16 15 10 4 xpsring1d φ 1 P = 1 Q 1 J
17 11 adantr φ x B E 1 Q
18 eleq2 1 Q = x ˙ E 1 Q E x ˙
19 18 adantl φ x B 1 Q = x ˙ E 1 Q E x ˙
20 elecg E 1 Q x B E x ˙ x ˙ E
21 11 20 sylan φ x B E x ˙ x ˙ E
22 ringrng J Ring J Rng
23 4 22 syl φ J Rng
24 3 23 eqeltrrid φ R 𝑠 I Rng
25 1 2 24 rng2idlnsg φ I NrmSGrp R
26 nsgsubg I NrmSGrp R I SubGrp R
27 25 26 syl φ I SubGrp R
28 27 adantr φ x B I SubGrp R
29 5 8 eqger I SubGrp R ˙ Er B
30 28 29 syl φ x B ˙ Er B
31 simpr φ x B x B
32 30 31 erth φ x B x ˙ E x ˙ = E ˙
33 32 biimpa φ x B x ˙ E x ˙ = E ˙
34 33 eqcomd φ x B x ˙ E E ˙ = x ˙
35 34 ex φ x B x ˙ E E ˙ = x ˙
36 21 35 sylbid φ x B E x ˙ E ˙ = x ˙
37 36 adantr φ x B 1 Q = x ˙ E x ˙ E ˙ = x ˙
38 19 37 sylbid φ x B 1 Q = x ˙ E 1 Q E ˙ = x ˙
39 38 ex φ x B 1 Q = x ˙ E 1 Q E ˙ = x ˙
40 17 39 mpid φ x B 1 Q = x ˙ E ˙ = x ˙
41 40 imp φ x B 1 Q = x ˙ E ˙ = x ˙
42 simpr φ x B 1 Q = x ˙ 1 Q = x ˙
43 41 42 eqtr4d φ x B 1 Q = x ˙ E ˙ = 1 Q
44 1 2 3 4 5 6 7 8 9 10 rngqiprngfulem1 φ x B 1 Q = x ˙
45 43 44 r19.29a φ E ˙ = 1 Q
46 45 eqcomd φ 1 Q = E ˙
47 7 eqcomi 1 J = 1 ˙
48 47 a1i φ 1 J = 1 ˙
49 46 48 opeq12d φ 1 Q 1 J = E ˙ 1 ˙
50 16 49 eqtrd φ 1 P = E ˙ 1 ˙