Metamath Proof Explorer


Theorem rngqipring1

Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
rngqiprngfu.t · = ( .r𝑅 )
rngqiprngfu.1 1 = ( 1r𝐽 )
rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
rngqiprngfu.q 𝑄 = ( 𝑅 /s )
rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
rngqiprngfu.m = ( -g𝑅 )
rngqiprngfu.a + = ( +g𝑅 )
rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
rngqipring1.p 𝑃 = ( 𝑄 ×s 𝐽 )
Assertion rngqipring1 ( 𝜑 → ( 1r𝑃 ) = ⟨ [ 𝐸 ] , 1 ⟩ )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
2 rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
4 rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
5 rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
6 rngqiprngfu.t · = ( .r𝑅 )
7 rngqiprngfu.1 1 = ( 1r𝐽 )
8 rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngfu.q 𝑄 = ( 𝑅 /s )
10 rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
11 rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
12 rngqiprngfu.m = ( -g𝑅 )
13 rngqiprngfu.a + = ( +g𝑅 )
14 rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
15 rngqipring1.p 𝑃 = ( 𝑄 ×s 𝐽 )
16 15 10 4 xpsring1d ( 𝜑 → ( 1r𝑃 ) = ⟨ ( 1r𝑄 ) , ( 1r𝐽 ) ⟩ )
17 11 adantr ( ( 𝜑𝑥𝐵 ) → 𝐸 ∈ ( 1r𝑄 ) )
18 eleq2 ( ( 1r𝑄 ) = [ 𝑥 ] → ( 𝐸 ∈ ( 1r𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ) )
19 18 adantl ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → ( 𝐸 ∈ ( 1r𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ) )
20 elecg ( ( 𝐸 ∈ ( 1r𝑄 ) ∧ 𝑥𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] 𝑥 𝐸 ) )
21 11 20 sylan ( ( 𝜑𝑥𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] 𝑥 𝐸 ) )
22 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
23 4 22 syl ( 𝜑𝐽 ∈ Rng )
24 3 23 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
25 1 2 24 rng2idlnsg ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
26 nsgsubg ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
27 25 26 syl ( 𝜑𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
28 27 adantr ( ( 𝜑𝑥𝐵 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
29 5 8 eqger ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → Er 𝐵 )
30 28 29 syl ( ( 𝜑𝑥𝐵 ) → Er 𝐵 )
31 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
32 30 31 erth ( ( 𝜑𝑥𝐵 ) → ( 𝑥 𝐸 ↔ [ 𝑥 ] = [ 𝐸 ] ) )
33 32 biimpa ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑥 𝐸 ) → [ 𝑥 ] = [ 𝐸 ] )
34 33 eqcomd ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑥 𝐸 ) → [ 𝐸 ] = [ 𝑥 ] )
35 34 ex ( ( 𝜑𝑥𝐵 ) → ( 𝑥 𝐸 → [ 𝐸 ] = [ 𝑥 ] ) )
36 21 35 sylbid ( ( 𝜑𝑥𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] → [ 𝐸 ] = [ 𝑥 ] ) )
37 36 adantr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → ( 𝐸 ∈ [ 𝑥 ] → [ 𝐸 ] = [ 𝑥 ] ) )
38 19 37 sylbid ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → ( 𝐸 ∈ ( 1r𝑄 ) → [ 𝐸 ] = [ 𝑥 ] ) )
39 38 ex ( ( 𝜑𝑥𝐵 ) → ( ( 1r𝑄 ) = [ 𝑥 ] → ( 𝐸 ∈ ( 1r𝑄 ) → [ 𝐸 ] = [ 𝑥 ] ) ) )
40 17 39 mpid ( ( 𝜑𝑥𝐵 ) → ( ( 1r𝑄 ) = [ 𝑥 ] → [ 𝐸 ] = [ 𝑥 ] ) )
41 40 imp ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → [ 𝐸 ] = [ 𝑥 ] )
42 simpr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → ( 1r𝑄 ) = [ 𝑥 ] )
43 41 42 eqtr4d ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → [ 𝐸 ] = ( 1r𝑄 ) )
44 1 2 3 4 5 6 7 8 9 10 rngqiprngfulem1 ( 𝜑 → ∃ 𝑥𝐵 ( 1r𝑄 ) = [ 𝑥 ] )
45 43 44 r19.29a ( 𝜑 → [ 𝐸 ] = ( 1r𝑄 ) )
46 45 eqcomd ( 𝜑 → ( 1r𝑄 ) = [ 𝐸 ] )
47 7 eqcomi ( 1r𝐽 ) = 1
48 47 a1i ( 𝜑 → ( 1r𝐽 ) = 1 )
49 46 48 opeq12d ( 𝜑 → ⟨ ( 1r𝑄 ) , ( 1r𝐽 ) ⟩ = ⟨ [ 𝐸 ] , 1 ⟩ )
50 16 49 eqtrd ( 𝜑 → ( 1r𝑃 ) = ⟨ [ 𝐸 ] , 1 ⟩ )