Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
11 |
|
rngqiprngfu.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
12 |
|
rngqiprngfu.m |
⊢ − = ( -g ‘ 𝑅 ) |
13 |
|
rngqiprngfu.a |
⊢ + = ( +g ‘ 𝑅 ) |
14 |
|
rngqiprngfu.n |
⊢ 𝑈 = ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) |
15 |
|
rngqipring1.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
16 |
15 10 4
|
xpsring1d |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = 〈 ( 1r ‘ 𝑄 ) , ( 1r ‘ 𝐽 ) 〉 ) |
17 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
18 |
|
eleq2 |
⊢ ( ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ∼ ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ∼ ) ) |
20 |
|
elecg |
⊢ ( ( 𝐸 ∈ ( 1r ‘ 𝑄 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] ∼ ↔ 𝑥 ∼ 𝐸 ) ) |
21 |
11 20
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] ∼ ↔ 𝑥 ∼ 𝐸 ) ) |
22 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
24 |
3 23
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
25 |
1 2 24
|
rng2idlnsg |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
26 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
29 |
5 8
|
eqger |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ∼ Er 𝐵 ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∼ Er 𝐵 ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
32 |
30 31
|
erth |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∼ 𝐸 ↔ [ 𝑥 ] ∼ = [ 𝐸 ] ∼ ) ) |
33 |
32
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∼ 𝐸 ) → [ 𝑥 ] ∼ = [ 𝐸 ] ∼ ) |
34 |
33
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∼ 𝐸 ) → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) |
35 |
34
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∼ 𝐸 → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) ) |
36 |
21 35
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] ∼ → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → ( 𝐸 ∈ [ 𝑥 ] ∼ → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) ) |
38 |
19 37
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) ) |
39 |
38
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) ) ) |
40 |
17 39
|
mpid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) ) |
41 |
40
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → [ 𝐸 ] ∼ = [ 𝑥 ] ∼ ) |
42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) |
43 |
41 42
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → [ 𝐸 ] ∼ = ( 1r ‘ 𝑄 ) ) |
44 |
1 2 3 4 5 6 7 8 9 10
|
rngqiprngfulem1 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) |
45 |
43 44
|
r19.29a |
⊢ ( 𝜑 → [ 𝐸 ] ∼ = ( 1r ‘ 𝑄 ) ) |
46 |
45
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) = [ 𝐸 ] ∼ ) |
47 |
7
|
eqcomi |
⊢ ( 1r ‘ 𝐽 ) = 1 |
48 |
47
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝐽 ) = 1 ) |
49 |
46 48
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1r ‘ 𝑄 ) , ( 1r ‘ 𝐽 ) 〉 = 〈 [ 𝐸 ] ∼ , 1 〉 ) |
50 |
16 49
|
eqtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = 〈 [ 𝐸 ] ∼ , 1 〉 ) |