Metamath Proof Explorer


Theorem rngqiprngfu

Description: The function value of F at the constructed expected ring unity of R is the ring unity of the product of the quotient with the two-sided ideal and the two-sided ideal. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φ R Rng
rngqiprngfu.i φ I 2Ideal R
rngqiprngfu.j J = R 𝑠 I
rngqiprngfu.u φ J Ring
rngqiprngfu.b B = Base R
rngqiprngfu.t · ˙ = R
rngqiprngfu.1 1 ˙ = 1 J
rngqiprngfu.g ˙ = R ~ QG I
rngqiprngfu.q Q = R / 𝑠 ˙
rngqiprngfu.v φ Q Ring
rngqiprngfu.e φ E 1 Q
rngqiprngfu.m - ˙ = - R
rngqiprngfu.a + ˙ = + R
rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
rngqiprngfu.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngfu φ F U = E ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φ R Rng
2 rngqiprngfu.i φ I 2Ideal R
3 rngqiprngfu.j J = R 𝑠 I
4 rngqiprngfu.u φ J Ring
5 rngqiprngfu.b B = Base R
6 rngqiprngfu.t · ˙ = R
7 rngqiprngfu.1 1 ˙ = 1 J
8 rngqiprngfu.g ˙ = R ~ QG I
9 rngqiprngfu.q Q = R / 𝑠 ˙
10 rngqiprngfu.v φ Q Ring
11 rngqiprngfu.e φ E 1 Q
12 rngqiprngfu.m - ˙ = - R
13 rngqiprngfu.a + ˙ = + R
14 rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
15 rngqiprngfu.f F = x B x ˙ 1 ˙ · ˙ x
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 φ U B
17 eqid Base Q = Base Q
18 eqid Q × 𝑠 J = Q × 𝑠 J
19 1 2 3 4 5 6 7 8 9 17 18 15 rngqiprngimfv φ U B F U = U ˙ 1 ˙ · ˙ U
20 16 19 mpdan φ F U = U ˙ 1 ˙ · ˙ U
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem4 φ U ˙ = E ˙
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem5 φ 1 ˙ · ˙ U = 1 ˙
23 21 22 opeq12d φ U ˙ 1 ˙ · ˙ U = E ˙ 1 ˙
24 20 23 eqtrd φ F U = E ˙ 1 ˙