Description: Lemma 4 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngqiprngfu.r | |
|
rngqiprngfu.i | |
||
rngqiprngfu.j | |
||
rngqiprngfu.u | |
||
rngqiprngfu.b | |
||
rngqiprngfu.t | |
||
rngqiprngfu.1 | |
||
rngqiprngfu.g | |
||
rngqiprngfu.q | |
||
rngqiprngfu.v | |
||
rngqiprngfu.e | |
||
rngqiprngfu.m | |
||
rngqiprngfu.a | |
||
rngqiprngfu.n | |
||
Assertion | rngqiprngfulem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.r | |
|
2 | rngqiprngfu.i | |
|
3 | rngqiprngfu.j | |
|
4 | rngqiprngfu.u | |
|
5 | rngqiprngfu.b | |
|
6 | rngqiprngfu.t | |
|
7 | rngqiprngfu.1 | |
|
8 | rngqiprngfu.g | |
|
9 | rngqiprngfu.q | |
|
10 | rngqiprngfu.v | |
|
11 | rngqiprngfu.e | |
|
12 | rngqiprngfu.m | |
|
13 | rngqiprngfu.a | |
|
14 | rngqiprngfu.n | |
|
15 | 14 | oveq2i | |
16 | 15 | a1i | |
17 | rngabl | |
|
18 | 1 17 | syl | |
19 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprngfulem2 | |
20 | rnggrp | |
|
21 | 1 20 | syl | |
22 | 1 2 3 4 5 6 7 | rngqiprng1elbas | |
23 | 5 6 | rngcl | |
24 | 1 22 19 23 | syl3anc | |
25 | 5 12 | grpsubcl | |
26 | 21 19 24 25 | syl3anc | |
27 | 5 13 12 18 19 26 22 | ablsubsub4 | |
28 | 5 12 18 19 24 | ablnncan | |
29 | 28 | oveq1d | |
30 | 16 27 29 | 3eqtr2d | |
31 | ringrng | |
|
32 | 4 31 | syl | |
33 | 3 32 | eqeltrrid | |
34 | 1 2 33 | rng2idlnsg | |
35 | nsgsubg | |
|
36 | 34 35 | syl | |
37 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | |
38 | 19 37 | mpdan | |
39 | eqid | |
|
40 | 2 3 39 | 2idlbas | |
41 | 38 40 | eleqtrd | |
42 | 39 7 | ringidcl | |
43 | 4 42 | syl | |
44 | 43 40 | eleqtrd | |
45 | eqid | |
|
46 | 12 3 45 | subgsub | |
47 | 36 41 44 46 | syl3anc | |
48 | 4 | ringgrpd | |
49 | 39 45 | grpsubcl | |
50 | 48 38 43 49 | syl3anc | |
51 | 47 50 | eqeltrd | |
52 | 51 40 | eleqtrd | |
53 | 30 52 | eqeltrd | |
54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | rngqiprngfulem3 | |
55 | 5 12 8 | qusecsub | |
56 | 18 36 54 19 55 | syl22anc | |
57 | 53 56 | mpbird | |