Metamath Proof Explorer


Theorem rngqiprngfulem4

Description: Lemma 4 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φ R Rng
rngqiprngfu.i φ I 2Ideal R
rngqiprngfu.j J = R 𝑠 I
rngqiprngfu.u φ J Ring
rngqiprngfu.b B = Base R
rngqiprngfu.t · ˙ = R
rngqiprngfu.1 1 ˙ = 1 J
rngqiprngfu.g ˙ = R ~ QG I
rngqiprngfu.q Q = R / 𝑠 ˙
rngqiprngfu.v φ Q Ring
rngqiprngfu.e φ E 1 Q
rngqiprngfu.m - ˙ = - R
rngqiprngfu.a + ˙ = + R
rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
Assertion rngqiprngfulem4 φ U ˙ = E ˙

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φ R Rng
2 rngqiprngfu.i φ I 2Ideal R
3 rngqiprngfu.j J = R 𝑠 I
4 rngqiprngfu.u φ J Ring
5 rngqiprngfu.b B = Base R
6 rngqiprngfu.t · ˙ = R
7 rngqiprngfu.1 1 ˙ = 1 J
8 rngqiprngfu.g ˙ = R ~ QG I
9 rngqiprngfu.q Q = R / 𝑠 ˙
10 rngqiprngfu.v φ Q Ring
11 rngqiprngfu.e φ E 1 Q
12 rngqiprngfu.m - ˙ = - R
13 rngqiprngfu.a + ˙ = + R
14 rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
15 14 oveq2i E - ˙ U = E - ˙ E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
16 15 a1i φ E - ˙ U = E - ˙ E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
17 rngabl R Rng R Abel
18 1 17 syl φ R Abel
19 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2 φ E B
20 rnggrp R Rng R Grp
21 1 20 syl φ R Grp
22 1 2 3 4 5 6 7 rngqiprng1elbas φ 1 ˙ B
23 5 6 rngcl R Rng 1 ˙ B E B 1 ˙ · ˙ E B
24 1 22 19 23 syl3anc φ 1 ˙ · ˙ E B
25 5 12 grpsubcl R Grp E B 1 ˙ · ˙ E B E - ˙ 1 ˙ · ˙ E B
26 21 19 24 25 syl3anc φ E - ˙ 1 ˙ · ˙ E B
27 5 13 12 18 19 26 22 ablsubsub4 φ E - ˙ E - ˙ 1 ˙ · ˙ E - ˙ 1 ˙ = E - ˙ E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
28 5 12 18 19 24 ablnncan φ E - ˙ E - ˙ 1 ˙ · ˙ E = 1 ˙ · ˙ E
29 28 oveq1d φ E - ˙ E - ˙ 1 ˙ · ˙ E - ˙ 1 ˙ = 1 ˙ · ˙ E - ˙ 1 ˙
30 16 27 29 3eqtr2d φ E - ˙ U = 1 ˙ · ˙ E - ˙ 1 ˙
31 ringrng J Ring J Rng
32 4 31 syl φ J Rng
33 3 32 eqeltrrid φ R 𝑠 I Rng
34 1 2 33 rng2idlnsg φ I NrmSGrp R
35 nsgsubg I NrmSGrp R I SubGrp R
36 34 35 syl φ I SubGrp R
37 1 2 3 4 5 6 7 rngqiprngghmlem1 φ E B 1 ˙ · ˙ E Base J
38 19 37 mpdan φ 1 ˙ · ˙ E Base J
39 eqid Base J = Base J
40 2 3 39 2idlbas φ Base J = I
41 38 40 eleqtrd φ 1 ˙ · ˙ E I
42 39 7 ringidcl J Ring 1 ˙ Base J
43 4 42 syl φ 1 ˙ Base J
44 43 40 eleqtrd φ 1 ˙ I
45 eqid - J = - J
46 12 3 45 subgsub I SubGrp R 1 ˙ · ˙ E I 1 ˙ I 1 ˙ · ˙ E - ˙ 1 ˙ = 1 ˙ · ˙ E - J 1 ˙
47 36 41 44 46 syl3anc φ 1 ˙ · ˙ E - ˙ 1 ˙ = 1 ˙ · ˙ E - J 1 ˙
48 4 ringgrpd φ J Grp
49 39 45 grpsubcl J Grp 1 ˙ · ˙ E Base J 1 ˙ Base J 1 ˙ · ˙ E - J 1 ˙ Base J
50 48 38 43 49 syl3anc φ 1 ˙ · ˙ E - J 1 ˙ Base J
51 47 50 eqeltrd φ 1 ˙ · ˙ E - ˙ 1 ˙ Base J
52 51 40 eleqtrd φ 1 ˙ · ˙ E - ˙ 1 ˙ I
53 30 52 eqeltrd φ E - ˙ U I
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 φ U B
55 5 12 8 qusecsub R Abel I SubGrp R U B E B U ˙ = E ˙ E - ˙ U I
56 18 36 54 19 55 syl22anc φ U ˙ = E ˙ E - ˙ U I
57 53 56 mpbird φ U ˙ = E ˙