Metamath Proof Explorer


Theorem rngqiprngfulem4

Description: Lemma 4 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φRRng
rngqiprngfu.i φI2IdealR
rngqiprngfu.j J=R𝑠I
rngqiprngfu.u φJRing
rngqiprngfu.b B=BaseR
rngqiprngfu.t ·˙=R
rngqiprngfu.1 1˙=1J
rngqiprngfu.g ˙=R~QGI
rngqiprngfu.q Q=R/𝑠˙
rngqiprngfu.v φQRing
rngqiprngfu.e φE1Q
rngqiprngfu.m -˙=-R
rngqiprngfu.a +˙=+R
rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
Assertion rngqiprngfulem4 φU˙=E˙

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φRRng
2 rngqiprngfu.i φI2IdealR
3 rngqiprngfu.j J=R𝑠I
4 rngqiprngfu.u φJRing
5 rngqiprngfu.b B=BaseR
6 rngqiprngfu.t ·˙=R
7 rngqiprngfu.1 1˙=1J
8 rngqiprngfu.g ˙=R~QGI
9 rngqiprngfu.q Q=R/𝑠˙
10 rngqiprngfu.v φQRing
11 rngqiprngfu.e φE1Q
12 rngqiprngfu.m -˙=-R
13 rngqiprngfu.a +˙=+R
14 rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
15 14 oveq2i E-˙U=E-˙E-˙1˙·˙E+˙1˙
16 15 a1i φE-˙U=E-˙E-˙1˙·˙E+˙1˙
17 rngabl RRngRAbel
18 1 17 syl φRAbel
19 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2 φEB
20 rnggrp RRngRGrp
21 1 20 syl φRGrp
22 1 2 3 4 5 6 7 rngqiprng1elbas φ1˙B
23 5 6 rngcl RRng1˙BEB1˙·˙EB
24 1 22 19 23 syl3anc φ1˙·˙EB
25 5 12 grpsubcl RGrpEB1˙·˙EBE-˙1˙·˙EB
26 21 19 24 25 syl3anc φE-˙1˙·˙EB
27 5 13 12 18 19 26 22 ablsubsub4 φE-˙E-˙1˙·˙E-˙1˙=E-˙E-˙1˙·˙E+˙1˙
28 5 12 18 19 24 ablnncan φE-˙E-˙1˙·˙E=1˙·˙E
29 28 oveq1d φE-˙E-˙1˙·˙E-˙1˙=1˙·˙E-˙1˙
30 16 27 29 3eqtr2d φE-˙U=1˙·˙E-˙1˙
31 ringrng JRingJRng
32 4 31 syl φJRng
33 3 32 eqeltrrid φR𝑠IRng
34 1 2 33 rng2idlnsg φINrmSGrpR
35 nsgsubg INrmSGrpRISubGrpR
36 34 35 syl φISubGrpR
37 1 2 3 4 5 6 7 rngqiprngghmlem1 φEB1˙·˙EBaseJ
38 19 37 mpdan φ1˙·˙EBaseJ
39 eqid BaseJ=BaseJ
40 2 3 39 2idlbas φBaseJ=I
41 38 40 eleqtrd φ1˙·˙EI
42 39 7 ringidcl JRing1˙BaseJ
43 4 42 syl φ1˙BaseJ
44 43 40 eleqtrd φ1˙I
45 eqid -J=-J
46 12 3 45 subgsub ISubGrpR1˙·˙EI1˙I1˙·˙E-˙1˙=1˙·˙E-J1˙
47 36 41 44 46 syl3anc φ1˙·˙E-˙1˙=1˙·˙E-J1˙
48 4 ringgrpd φJGrp
49 39 45 grpsubcl JGrp1˙·˙EBaseJ1˙BaseJ1˙·˙E-J1˙BaseJ
50 48 38 43 49 syl3anc φ1˙·˙E-J1˙BaseJ
51 47 50 eqeltrd φ1˙·˙E-˙1˙BaseJ
52 51 40 eleqtrd φ1˙·˙E-˙1˙I
53 30 52 eqeltrd φE-˙UI
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 φUB
55 5 12 8 qusecsub RAbelISubGrpRUBEBU˙=E˙E-˙UI
56 18 36 54 19 55 syl22anc φU˙=E˙E-˙UI
57 53 56 mpbird φU˙=E˙