Description: Lemma 5 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngqiprngfu.r | |
|
rngqiprngfu.i | |
||
rngqiprngfu.j | |
||
rngqiprngfu.u | |
||
rngqiprngfu.b | |
||
rngqiprngfu.t | |
||
rngqiprngfu.1 | |
||
rngqiprngfu.g | |
||
rngqiprngfu.q | |
||
rngqiprngfu.v | |
||
rngqiprngfu.e | |
||
rngqiprngfu.m | |
||
rngqiprngfu.a | |
||
rngqiprngfu.n | |
||
Assertion | rngqiprngfulem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.r | |
|
2 | rngqiprngfu.i | |
|
3 | rngqiprngfu.j | |
|
4 | rngqiprngfu.u | |
|
5 | rngqiprngfu.b | |
|
6 | rngqiprngfu.t | |
|
7 | rngqiprngfu.1 | |
|
8 | rngqiprngfu.g | |
|
9 | rngqiprngfu.q | |
|
10 | rngqiprngfu.v | |
|
11 | rngqiprngfu.e | |
|
12 | rngqiprngfu.m | |
|
13 | rngqiprngfu.a | |
|
14 | rngqiprngfu.n | |
|
15 | 14 | oveq2i | |
16 | 15 | a1i | |
17 | 1 2 3 4 5 6 7 | rngqiprng1elbas | |
18 | rnggrp | |
|
19 | 1 18 | syl | |
20 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprngfulem2 | |
21 | 5 6 | rngcl | |
22 | 1 17 20 21 | syl3anc | |
23 | 5 12 | grpsubcl | |
24 | 19 20 22 23 | syl3anc | |
25 | 5 13 6 | rngdi | |
26 | 1 17 24 17 25 | syl13anc | |
27 | 5 6 12 1 17 20 22 | rngsubdi | |
28 | 5 6 | rngass | |
29 | 1 17 17 20 28 | syl13anc | |
30 | 3 6 | ressmulr | |
31 | 2 30 | syl | |
32 | 31 | oveqd | |
33 | eqid | |
|
34 | 33 7 | ringidcl | |
35 | eqid | |
|
36 | 33 35 7 | ringlidm | |
37 | 4 34 36 | syl2anc2 | |
38 | 32 37 | eqtrd | |
39 | 38 | oveq1d | |
40 | 29 39 | eqtr3d | |
41 | 40 | oveq2d | |
42 | eqid | |
|
43 | 5 42 12 | grpsubid | |
44 | 19 22 43 | syl2anc | |
45 | 27 41 44 | 3eqtrd | |
46 | 45 38 | oveq12d | |
47 | 26 46 | eqtrd | |
48 | 5 13 42 19 17 | grplidd | |
49 | 16 47 48 | 3eqtrd | |