Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
|
2 |
|
rngqiprngfu.i |
|
3 |
|
rngqiprngfu.j |
|
4 |
|
rngqiprngfu.u |
|
5 |
|
rngqiprngfu.b |
|
6 |
|
rngqiprngfu.t |
|
7 |
|
rngqiprngfu.1 |
|
8 |
|
rngqiprngfu.g |
|
9 |
|
rngqiprngfu.q |
|
10 |
|
rngqiprngfu.v |
|
11 |
|
rngqiprngfu.e |
|
12 |
|
rngqiprngfu.m |
|
13 |
|
rngqiprngfu.a |
|
14 |
|
rngqiprngfu.n |
|
15 |
14
|
oveq2i |
|
16 |
15
|
a1i |
|
17 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|
18 |
|
rnggrp |
|
19 |
1 18
|
syl |
|
20 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprngfulem2 |
|
21 |
5 6
|
rngcl |
|
22 |
1 17 20 21
|
syl3anc |
|
23 |
5 12
|
grpsubcl |
|
24 |
19 20 22 23
|
syl3anc |
|
25 |
5 13 6
|
rngdi |
|
26 |
1 17 24 17 25
|
syl13anc |
|
27 |
5 6 12 1 17 20 22
|
rngsubdi |
|
28 |
5 6
|
rngass |
|
29 |
1 17 17 20 28
|
syl13anc |
|
30 |
3 6
|
ressmulr |
|
31 |
2 30
|
syl |
|
32 |
31
|
oveqd |
|
33 |
|
eqid |
|
34 |
33 7
|
ringidcl |
|
35 |
|
eqid |
|
36 |
33 35 7
|
ringlidm |
|
37 |
4 34 36
|
syl2anc2 |
|
38 |
32 37
|
eqtrd |
|
39 |
38
|
oveq1d |
|
40 |
29 39
|
eqtr3d |
|
41 |
40
|
oveq2d |
|
42 |
|
eqid |
|
43 |
5 42 12
|
grpsubid |
|
44 |
19 22 43
|
syl2anc |
|
45 |
27 41 44
|
3eqtrd |
|
46 |
45 38
|
oveq12d |
|
47 |
26 46
|
eqtrd |
|
48 |
5 13 42 19 17
|
grplidd |
|
49 |
16 47 48
|
3eqtrd |
|