Metamath Proof Explorer


Theorem rngqiprngfulem5

Description: Lemma 5 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φRRng
rngqiprngfu.i φI2IdealR
rngqiprngfu.j J=R𝑠I
rngqiprngfu.u φJRing
rngqiprngfu.b B=BaseR
rngqiprngfu.t ·˙=R
rngqiprngfu.1 1˙=1J
rngqiprngfu.g ˙=R~QGI
rngqiprngfu.q Q=R/𝑠˙
rngqiprngfu.v φQRing
rngqiprngfu.e φE1Q
rngqiprngfu.m -˙=-R
rngqiprngfu.a +˙=+R
rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
Assertion rngqiprngfulem5 φ1˙·˙U=1˙

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φRRng
2 rngqiprngfu.i φI2IdealR
3 rngqiprngfu.j J=R𝑠I
4 rngqiprngfu.u φJRing
5 rngqiprngfu.b B=BaseR
6 rngqiprngfu.t ·˙=R
7 rngqiprngfu.1 1˙=1J
8 rngqiprngfu.g ˙=R~QGI
9 rngqiprngfu.q Q=R/𝑠˙
10 rngqiprngfu.v φQRing
11 rngqiprngfu.e φE1Q
12 rngqiprngfu.m -˙=-R
13 rngqiprngfu.a +˙=+R
14 rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
15 14 oveq2i 1˙·˙U=1˙·˙E-˙1˙·˙E+˙1˙
16 15 a1i φ1˙·˙U=1˙·˙E-˙1˙·˙E+˙1˙
17 1 2 3 4 5 6 7 rngqiprng1elbas φ1˙B
18 rnggrp RRngRGrp
19 1 18 syl φRGrp
20 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2 φEB
21 5 6 rngcl RRng1˙BEB1˙·˙EB
22 1 17 20 21 syl3anc φ1˙·˙EB
23 5 12 grpsubcl RGrpEB1˙·˙EBE-˙1˙·˙EB
24 19 20 22 23 syl3anc φE-˙1˙·˙EB
25 5 13 6 rngdi RRng1˙BE-˙1˙·˙EB1˙B1˙·˙E-˙1˙·˙E+˙1˙=1˙·˙E-˙1˙·˙E+˙1˙·˙1˙
26 1 17 24 17 25 syl13anc φ1˙·˙E-˙1˙·˙E+˙1˙=1˙·˙E-˙1˙·˙E+˙1˙·˙1˙
27 5 6 12 1 17 20 22 rngsubdi φ1˙·˙E-˙1˙·˙E=1˙·˙E-˙1˙·˙1˙·˙E
28 5 6 rngass RRng1˙B1˙BEB1˙·˙1˙·˙E=1˙·˙1˙·˙E
29 1 17 17 20 28 syl13anc φ1˙·˙1˙·˙E=1˙·˙1˙·˙E
30 3 6 ressmulr I2IdealR·˙=J
31 2 30 syl φ·˙=J
32 31 oveqd φ1˙·˙1˙=1˙J1˙
33 eqid BaseJ=BaseJ
34 33 7 ringidcl JRing1˙BaseJ
35 eqid J=J
36 33 35 7 ringlidm JRing1˙BaseJ1˙J1˙=1˙
37 4 34 36 syl2anc2 φ1˙J1˙=1˙
38 32 37 eqtrd φ1˙·˙1˙=1˙
39 38 oveq1d φ1˙·˙1˙·˙E=1˙·˙E
40 29 39 eqtr3d φ1˙·˙1˙·˙E=1˙·˙E
41 40 oveq2d φ1˙·˙E-˙1˙·˙1˙·˙E=1˙·˙E-˙1˙·˙E
42 eqid 0R=0R
43 5 42 12 grpsubid RGrp1˙·˙EB1˙·˙E-˙1˙·˙E=0R
44 19 22 43 syl2anc φ1˙·˙E-˙1˙·˙E=0R
45 27 41 44 3eqtrd φ1˙·˙E-˙1˙·˙E=0R
46 45 38 oveq12d φ1˙·˙E-˙1˙·˙E+˙1˙·˙1˙=0R+˙1˙
47 26 46 eqtrd φ1˙·˙E-˙1˙·˙E+˙1˙=0R+˙1˙
48 5 13 42 19 17 grplidd φ0R+˙1˙=1˙
49 16 47 48 3eqtrd φ1˙·˙U=1˙