Metamath Proof Explorer


Theorem rngqiprngfulem5

Description: Lemma 5 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r
|- ( ph -> R e. Rng )
rngqiprngfu.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngqiprngfu.j
|- J = ( R |`s I )
rngqiprngfu.u
|- ( ph -> J e. Ring )
rngqiprngfu.b
|- B = ( Base ` R )
rngqiprngfu.t
|- .x. = ( .r ` R )
rngqiprngfu.1
|- .1. = ( 1r ` J )
rngqiprngfu.g
|- .~ = ( R ~QG I )
rngqiprngfu.q
|- Q = ( R /s .~ )
rngqiprngfu.v
|- ( ph -> Q e. Ring )
rngqiprngfu.e
|- ( ph -> E e. ( 1r ` Q ) )
rngqiprngfu.m
|- .- = ( -g ` R )
rngqiprngfu.a
|- .+ = ( +g ` R )
rngqiprngfu.n
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
Assertion rngqiprngfulem5
|- ( ph -> ( .1. .x. U ) = .1. )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r
 |-  ( ph -> R e. Rng )
2 rngqiprngfu.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rngqiprngfu.j
 |-  J = ( R |`s I )
4 rngqiprngfu.u
 |-  ( ph -> J e. Ring )
5 rngqiprngfu.b
 |-  B = ( Base ` R )
6 rngqiprngfu.t
 |-  .x. = ( .r ` R )
7 rngqiprngfu.1
 |-  .1. = ( 1r ` J )
8 rngqiprngfu.g
 |-  .~ = ( R ~QG I )
9 rngqiprngfu.q
 |-  Q = ( R /s .~ )
10 rngqiprngfu.v
 |-  ( ph -> Q e. Ring )
11 rngqiprngfu.e
 |-  ( ph -> E e. ( 1r ` Q ) )
12 rngqiprngfu.m
 |-  .- = ( -g ` R )
13 rngqiprngfu.a
 |-  .+ = ( +g ` R )
14 rngqiprngfu.n
 |-  U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
15 14 oveq2i
 |-  ( .1. .x. U ) = ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) )
16 15 a1i
 |-  ( ph -> ( .1. .x. U ) = ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) )
17 1 2 3 4 5 6 7 rngqiprng1elbas
 |-  ( ph -> .1. e. B )
18 rnggrp
 |-  ( R e. Rng -> R e. Grp )
19 1 18 syl
 |-  ( ph -> R e. Grp )
20 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2
 |-  ( ph -> E e. B )
21 5 6 rngcl
 |-  ( ( R e. Rng /\ .1. e. B /\ E e. B ) -> ( .1. .x. E ) e. B )
22 1 17 20 21 syl3anc
 |-  ( ph -> ( .1. .x. E ) e. B )
23 5 12 grpsubcl
 |-  ( ( R e. Grp /\ E e. B /\ ( .1. .x. E ) e. B ) -> ( E .- ( .1. .x. E ) ) e. B )
24 19 20 22 23 syl3anc
 |-  ( ph -> ( E .- ( .1. .x. E ) ) e. B )
25 5 13 6 rngdi
 |-  ( ( R e. Rng /\ ( .1. e. B /\ ( E .- ( .1. .x. E ) ) e. B /\ .1. e. B ) ) -> ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) = ( ( .1. .x. ( E .- ( .1. .x. E ) ) ) .+ ( .1. .x. .1. ) ) )
26 1 17 24 17 25 syl13anc
 |-  ( ph -> ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) = ( ( .1. .x. ( E .- ( .1. .x. E ) ) ) .+ ( .1. .x. .1. ) ) )
27 5 6 12 1 17 20 22 rngsubdi
 |-  ( ph -> ( .1. .x. ( E .- ( .1. .x. E ) ) ) = ( ( .1. .x. E ) .- ( .1. .x. ( .1. .x. E ) ) ) )
28 5 6 rngass
 |-  ( ( R e. Rng /\ ( .1. e. B /\ .1. e. B /\ E e. B ) ) -> ( ( .1. .x. .1. ) .x. E ) = ( .1. .x. ( .1. .x. E ) ) )
29 1 17 17 20 28 syl13anc
 |-  ( ph -> ( ( .1. .x. .1. ) .x. E ) = ( .1. .x. ( .1. .x. E ) ) )
30 3 6 ressmulr
 |-  ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) )
31 2 30 syl
 |-  ( ph -> .x. = ( .r ` J ) )
32 31 oveqd
 |-  ( ph -> ( .1. .x. .1. ) = ( .1. ( .r ` J ) .1. ) )
33 eqid
 |-  ( Base ` J ) = ( Base ` J )
34 33 7 ringidcl
 |-  ( J e. Ring -> .1. e. ( Base ` J ) )
35 eqid
 |-  ( .r ` J ) = ( .r ` J )
36 33 35 7 ringlidm
 |-  ( ( J e. Ring /\ .1. e. ( Base ` J ) ) -> ( .1. ( .r ` J ) .1. ) = .1. )
37 4 34 36 syl2anc2
 |-  ( ph -> ( .1. ( .r ` J ) .1. ) = .1. )
38 32 37 eqtrd
 |-  ( ph -> ( .1. .x. .1. ) = .1. )
39 38 oveq1d
 |-  ( ph -> ( ( .1. .x. .1. ) .x. E ) = ( .1. .x. E ) )
40 29 39 eqtr3d
 |-  ( ph -> ( .1. .x. ( .1. .x. E ) ) = ( .1. .x. E ) )
41 40 oveq2d
 |-  ( ph -> ( ( .1. .x. E ) .- ( .1. .x. ( .1. .x. E ) ) ) = ( ( .1. .x. E ) .- ( .1. .x. E ) ) )
42 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
43 5 42 12 grpsubid
 |-  ( ( R e. Grp /\ ( .1. .x. E ) e. B ) -> ( ( .1. .x. E ) .- ( .1. .x. E ) ) = ( 0g ` R ) )
44 19 22 43 syl2anc
 |-  ( ph -> ( ( .1. .x. E ) .- ( .1. .x. E ) ) = ( 0g ` R ) )
45 27 41 44 3eqtrd
 |-  ( ph -> ( .1. .x. ( E .- ( .1. .x. E ) ) ) = ( 0g ` R ) )
46 45 38 oveq12d
 |-  ( ph -> ( ( .1. .x. ( E .- ( .1. .x. E ) ) ) .+ ( .1. .x. .1. ) ) = ( ( 0g ` R ) .+ .1. ) )
47 26 46 eqtrd
 |-  ( ph -> ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) = ( ( 0g ` R ) .+ .1. ) )
48 5 13 42 19 17 grplidd
 |-  ( ph -> ( ( 0g ` R ) .+ .1. ) = .1. )
49 16 47 48 3eqtrd
 |-  ( ph -> ( .1. .x. U ) = .1. )