Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
15 |
14
|
oveq2i |
|- ( .1. .x. U ) = ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) |
16 |
15
|
a1i |
|- ( ph -> ( .1. .x. U ) = ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) ) |
17 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
18 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
19 |
1 18
|
syl |
|- ( ph -> R e. Grp ) |
20 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprngfulem2 |
|- ( ph -> E e. B ) |
21 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ .1. e. B /\ E e. B ) -> ( .1. .x. E ) e. B ) |
22 |
1 17 20 21
|
syl3anc |
|- ( ph -> ( .1. .x. E ) e. B ) |
23 |
5 12
|
grpsubcl |
|- ( ( R e. Grp /\ E e. B /\ ( .1. .x. E ) e. B ) -> ( E .- ( .1. .x. E ) ) e. B ) |
24 |
19 20 22 23
|
syl3anc |
|- ( ph -> ( E .- ( .1. .x. E ) ) e. B ) |
25 |
5 13 6
|
rngdi |
|- ( ( R e. Rng /\ ( .1. e. B /\ ( E .- ( .1. .x. E ) ) e. B /\ .1. e. B ) ) -> ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) = ( ( .1. .x. ( E .- ( .1. .x. E ) ) ) .+ ( .1. .x. .1. ) ) ) |
26 |
1 17 24 17 25
|
syl13anc |
|- ( ph -> ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) = ( ( .1. .x. ( E .- ( .1. .x. E ) ) ) .+ ( .1. .x. .1. ) ) ) |
27 |
5 6 12 1 17 20 22
|
rngsubdi |
|- ( ph -> ( .1. .x. ( E .- ( .1. .x. E ) ) ) = ( ( .1. .x. E ) .- ( .1. .x. ( .1. .x. E ) ) ) ) |
28 |
5 6
|
rngass |
|- ( ( R e. Rng /\ ( .1. e. B /\ .1. e. B /\ E e. B ) ) -> ( ( .1. .x. .1. ) .x. E ) = ( .1. .x. ( .1. .x. E ) ) ) |
29 |
1 17 17 20 28
|
syl13anc |
|- ( ph -> ( ( .1. .x. .1. ) .x. E ) = ( .1. .x. ( .1. .x. E ) ) ) |
30 |
3 6
|
ressmulr |
|- ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) |
31 |
2 30
|
syl |
|- ( ph -> .x. = ( .r ` J ) ) |
32 |
31
|
oveqd |
|- ( ph -> ( .1. .x. .1. ) = ( .1. ( .r ` J ) .1. ) ) |
33 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
34 |
33 7
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
35 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
36 |
33 35 7
|
ringlidm |
|- ( ( J e. Ring /\ .1. e. ( Base ` J ) ) -> ( .1. ( .r ` J ) .1. ) = .1. ) |
37 |
4 34 36
|
syl2anc2 |
|- ( ph -> ( .1. ( .r ` J ) .1. ) = .1. ) |
38 |
32 37
|
eqtrd |
|- ( ph -> ( .1. .x. .1. ) = .1. ) |
39 |
38
|
oveq1d |
|- ( ph -> ( ( .1. .x. .1. ) .x. E ) = ( .1. .x. E ) ) |
40 |
29 39
|
eqtr3d |
|- ( ph -> ( .1. .x. ( .1. .x. E ) ) = ( .1. .x. E ) ) |
41 |
40
|
oveq2d |
|- ( ph -> ( ( .1. .x. E ) .- ( .1. .x. ( .1. .x. E ) ) ) = ( ( .1. .x. E ) .- ( .1. .x. E ) ) ) |
42 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
43 |
5 42 12
|
grpsubid |
|- ( ( R e. Grp /\ ( .1. .x. E ) e. B ) -> ( ( .1. .x. E ) .- ( .1. .x. E ) ) = ( 0g ` R ) ) |
44 |
19 22 43
|
syl2anc |
|- ( ph -> ( ( .1. .x. E ) .- ( .1. .x. E ) ) = ( 0g ` R ) ) |
45 |
27 41 44
|
3eqtrd |
|- ( ph -> ( .1. .x. ( E .- ( .1. .x. E ) ) ) = ( 0g ` R ) ) |
46 |
45 38
|
oveq12d |
|- ( ph -> ( ( .1. .x. ( E .- ( .1. .x. E ) ) ) .+ ( .1. .x. .1. ) ) = ( ( 0g ` R ) .+ .1. ) ) |
47 |
26 46
|
eqtrd |
|- ( ph -> ( .1. .x. ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) = ( ( 0g ` R ) .+ .1. ) ) |
48 |
5 13 42 19 17
|
grplidd |
|- ( ph -> ( ( 0g ` R ) .+ .1. ) = .1. ) |
49 |
16 47 48
|
3eqtrd |
|- ( ph -> ( .1. .x. U ) = .1. ) |