| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
| 9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
| 10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 11 |
|
rngqiprngfu.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
| 12 |
|
rngqiprngfu.m |
⊢ − = ( -g ‘ 𝑅 ) |
| 13 |
|
rngqiprngfu.a |
⊢ + = ( +g ‘ 𝑅 ) |
| 14 |
|
rngqiprngfu.n |
⊢ 𝑈 = ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) |
| 15 |
14
|
oveq2i |
⊢ ( 1 · 𝑈 ) = ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( 1 · 𝑈 ) = ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) ) |
| 17 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 18 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprngfulem2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
| 21 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ) → ( 1 · 𝐸 ) ∈ 𝐵 ) |
| 22 |
1 17 20 21
|
syl3anc |
⊢ ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐵 ) |
| 23 |
5 12
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ) |
| 24 |
19 20 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ) |
| 25 |
5 13 6
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ∧ 1 ∈ 𝐵 ) ) → ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) ) |
| 26 |
1 17 24 17 25
|
syl13anc |
⊢ ( 𝜑 → ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) ) |
| 27 |
5 6 12 1 17 20 22
|
rngsubdi |
⊢ ( 𝜑 → ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) = ( ( 1 · 𝐸 ) − ( 1 · ( 1 · 𝐸 ) ) ) ) |
| 28 |
5 6
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ) ) → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · ( 1 · 𝐸 ) ) ) |
| 29 |
1 17 17 20 28
|
syl13anc |
⊢ ( 𝜑 → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · ( 1 · 𝐸 ) ) ) |
| 30 |
3 6
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r ‘ 𝐽 ) ) |
| 31 |
2 30
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝐽 ) ) |
| 32 |
31
|
oveqd |
⊢ ( 𝜑 → ( 1 · 1 ) = ( 1 ( .r ‘ 𝐽 ) 1 ) ) |
| 33 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
| 34 |
33 7
|
ringidcl |
⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
| 35 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
| 36 |
33 35 7
|
ringlidm |
⊢ ( ( 𝐽 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝐽 ) ) → ( 1 ( .r ‘ 𝐽 ) 1 ) = 1 ) |
| 37 |
4 34 36
|
syl2anc2 |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝐽 ) 1 ) = 1 ) |
| 38 |
32 37
|
eqtrd |
⊢ ( 𝜑 → ( 1 · 1 ) = 1 ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · 𝐸 ) ) |
| 40 |
29 39
|
eqtr3d |
⊢ ( 𝜑 → ( 1 · ( 1 · 𝐸 ) ) = ( 1 · 𝐸 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) − ( 1 · ( 1 · 𝐸 ) ) ) = ( ( 1 · 𝐸 ) − ( 1 · 𝐸 ) ) ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 43 |
5 42 12
|
grpsubid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( ( 1 · 𝐸 ) − ( 1 · 𝐸 ) ) = ( 0g ‘ 𝑅 ) ) |
| 44 |
19 22 43
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) − ( 1 · 𝐸 ) ) = ( 0g ‘ 𝑅 ) ) |
| 45 |
27 41 44
|
3eqtrd |
⊢ ( 𝜑 → ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 46 |
45 38
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) = ( ( 0g ‘ 𝑅 ) + 1 ) ) |
| 47 |
26 46
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 0g ‘ 𝑅 ) + 1 ) ) |
| 48 |
5 13 42 19 17
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) + 1 ) = 1 ) |
| 49 |
16 47 48
|
3eqtrd |
⊢ ( 𝜑 → ( 1 · 𝑈 ) = 1 ) |