Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
11 |
|
rngqiprngfu.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
12 |
|
rngqiprngfu.m |
⊢ − = ( -g ‘ 𝑅 ) |
13 |
|
rngqiprngfu.a |
⊢ + = ( +g ‘ 𝑅 ) |
14 |
|
rngqiprngfu.n |
⊢ 𝑈 = ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) |
15 |
14
|
oveq2i |
⊢ ( 1 · 𝑈 ) = ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 1 · 𝑈 ) = ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) ) |
17 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
18 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
20 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprngfulem2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
21 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ) → ( 1 · 𝐸 ) ∈ 𝐵 ) |
22 |
1 17 20 21
|
syl3anc |
⊢ ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐵 ) |
23 |
5 12
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ) |
24 |
19 20 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ) |
25 |
5 13 6
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ∧ 1 ∈ 𝐵 ) ) → ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) ) |
26 |
1 17 24 17 25
|
syl13anc |
⊢ ( 𝜑 → ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) ) |
27 |
5 6 12 1 17 20 22
|
rngsubdi |
⊢ ( 𝜑 → ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) = ( ( 1 · 𝐸 ) − ( 1 · ( 1 · 𝐸 ) ) ) ) |
28 |
5 6
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ) ) → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · ( 1 · 𝐸 ) ) ) |
29 |
1 17 17 20 28
|
syl13anc |
⊢ ( 𝜑 → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · ( 1 · 𝐸 ) ) ) |
30 |
3 6
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r ‘ 𝐽 ) ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝐽 ) ) |
32 |
31
|
oveqd |
⊢ ( 𝜑 → ( 1 · 1 ) = ( 1 ( .r ‘ 𝐽 ) 1 ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
34 |
33 7
|
ringidcl |
⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
35 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
36 |
33 35 7
|
ringlidm |
⊢ ( ( 𝐽 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝐽 ) ) → ( 1 ( .r ‘ 𝐽 ) 1 ) = 1 ) |
37 |
4 34 36
|
syl2anc2 |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝐽 ) 1 ) = 1 ) |
38 |
32 37
|
eqtrd |
⊢ ( 𝜑 → ( 1 · 1 ) = 1 ) |
39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · 𝐸 ) ) |
40 |
29 39
|
eqtr3d |
⊢ ( 𝜑 → ( 1 · ( 1 · 𝐸 ) ) = ( 1 · 𝐸 ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) − ( 1 · ( 1 · 𝐸 ) ) ) = ( ( 1 · 𝐸 ) − ( 1 · 𝐸 ) ) ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
43 |
5 42 12
|
grpsubid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( ( 1 · 𝐸 ) − ( 1 · 𝐸 ) ) = ( 0g ‘ 𝑅 ) ) |
44 |
19 22 43
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) − ( 1 · 𝐸 ) ) = ( 0g ‘ 𝑅 ) ) |
45 |
27 41 44
|
3eqtrd |
⊢ ( 𝜑 → ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) = ( 0g ‘ 𝑅 ) ) |
46 |
45 38
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 · ( 𝐸 − ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) = ( ( 0g ‘ 𝑅 ) + 1 ) ) |
47 |
26 46
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 0g ‘ 𝑅 ) + 1 ) ) |
48 |
5 13 42 19 17
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) + 1 ) = 1 ) |
49 |
16 47 48
|
3eqtrd |
⊢ ( 𝜑 → ( 1 · 𝑈 ) = 1 ) |