Metamath Proof Explorer


Theorem rngqiprngfulem5

Description: Lemma 5 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
rngqiprngfu.t · = ( .r𝑅 )
rngqiprngfu.1 1 = ( 1r𝐽 )
rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
rngqiprngfu.q 𝑄 = ( 𝑅 /s )
rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
rngqiprngfu.m = ( -g𝑅 )
rngqiprngfu.a + = ( +g𝑅 )
rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
Assertion rngqiprngfulem5 ( 𝜑 → ( 1 · 𝑈 ) = 1 )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
2 rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
4 rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
5 rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
6 rngqiprngfu.t · = ( .r𝑅 )
7 rngqiprngfu.1 1 = ( 1r𝐽 )
8 rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngfu.q 𝑄 = ( 𝑅 /s )
10 rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
11 rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
12 rngqiprngfu.m = ( -g𝑅 )
13 rngqiprngfu.a + = ( +g𝑅 )
14 rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
15 14 oveq2i ( 1 · 𝑈 ) = ( 1 · ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) )
16 15 a1i ( 𝜑 → ( 1 · 𝑈 ) = ( 1 · ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) ) )
17 1 2 3 4 5 6 7 rngqiprng1elbas ( 𝜑1𝐵 )
18 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
19 1 18 syl ( 𝜑𝑅 ∈ Grp )
20 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2 ( 𝜑𝐸𝐵 )
21 5 6 rngcl ( ( 𝑅 ∈ Rng ∧ 1𝐵𝐸𝐵 ) → ( 1 · 𝐸 ) ∈ 𝐵 )
22 1 17 20 21 syl3anc ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐵 )
23 5 12 grpsubcl ( ( 𝑅 ∈ Grp ∧ 𝐸𝐵 ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( 𝐸 ( 1 · 𝐸 ) ) ∈ 𝐵 )
24 19 20 22 23 syl3anc ( 𝜑 → ( 𝐸 ( 1 · 𝐸 ) ) ∈ 𝐵 )
25 5 13 6 rngdi ( ( 𝑅 ∈ Rng ∧ ( 1𝐵 ∧ ( 𝐸 ( 1 · 𝐸 ) ) ∈ 𝐵1𝐵 ) ) → ( 1 · ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 1 · ( 𝐸 ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) )
26 1 17 24 17 25 syl13anc ( 𝜑 → ( 1 · ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 1 · ( 𝐸 ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) )
27 5 6 12 1 17 20 22 rngsubdi ( 𝜑 → ( 1 · ( 𝐸 ( 1 · 𝐸 ) ) ) = ( ( 1 · 𝐸 ) ( 1 · ( 1 · 𝐸 ) ) ) )
28 5 6 rngass ( ( 𝑅 ∈ Rng ∧ ( 1𝐵1𝐵𝐸𝐵 ) ) → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · ( 1 · 𝐸 ) ) )
29 1 17 17 20 28 syl13anc ( 𝜑 → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · ( 1 · 𝐸 ) ) )
30 3 6 ressmulr ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r𝐽 ) )
31 2 30 syl ( 𝜑· = ( .r𝐽 ) )
32 31 oveqd ( 𝜑 → ( 1 · 1 ) = ( 1 ( .r𝐽 ) 1 ) )
33 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
34 33 7 ringidcl ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) )
35 eqid ( .r𝐽 ) = ( .r𝐽 )
36 33 35 7 ringlidm ( ( 𝐽 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝐽 ) ) → ( 1 ( .r𝐽 ) 1 ) = 1 )
37 4 34 36 syl2anc2 ( 𝜑 → ( 1 ( .r𝐽 ) 1 ) = 1 )
38 32 37 eqtrd ( 𝜑 → ( 1 · 1 ) = 1 )
39 38 oveq1d ( 𝜑 → ( ( 1 · 1 ) · 𝐸 ) = ( 1 · 𝐸 ) )
40 29 39 eqtr3d ( 𝜑 → ( 1 · ( 1 · 𝐸 ) ) = ( 1 · 𝐸 ) )
41 40 oveq2d ( 𝜑 → ( ( 1 · 𝐸 ) ( 1 · ( 1 · 𝐸 ) ) ) = ( ( 1 · 𝐸 ) ( 1 · 𝐸 ) ) )
42 eqid ( 0g𝑅 ) = ( 0g𝑅 )
43 5 42 12 grpsubid ( ( 𝑅 ∈ Grp ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( ( 1 · 𝐸 ) ( 1 · 𝐸 ) ) = ( 0g𝑅 ) )
44 19 22 43 syl2anc ( 𝜑 → ( ( 1 · 𝐸 ) ( 1 · 𝐸 ) ) = ( 0g𝑅 ) )
45 27 41 44 3eqtrd ( 𝜑 → ( 1 · ( 𝐸 ( 1 · 𝐸 ) ) ) = ( 0g𝑅 ) )
46 45 38 oveq12d ( 𝜑 → ( ( 1 · ( 𝐸 ( 1 · 𝐸 ) ) ) + ( 1 · 1 ) ) = ( ( 0g𝑅 ) + 1 ) )
47 26 46 eqtrd ( 𝜑 → ( 1 · ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) ) = ( ( 0g𝑅 ) + 1 ) )
48 5 13 42 19 17 grplidd ( 𝜑 → ( ( 0g𝑅 ) + 1 ) = 1 )
49 16 47 48 3eqtrd ( 𝜑 → ( 1 · 𝑈 ) = 1 )