Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
11 |
|
rngqiprngfu.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
rngqiprngfulem1 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) |
13 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
14 |
|
eleq2 |
⊢ ( ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ∼ ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ∼ ) ) |
16 |
|
elecg |
⊢ ( ( 𝐸 ∈ ( 1r ‘ 𝑄 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] ∼ ↔ 𝑥 ∼ 𝐸 ) ) |
17 |
11 16
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] ∼ ↔ 𝑥 ∼ 𝐸 ) ) |
18 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
20 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
21 |
5 20
|
2idlss |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
23 |
19 22
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵 ) ) |
25 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
26 |
5 25 8
|
eqgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵 ) → ( 𝑥 ∼ 𝐸 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ ( 𝐸 ( -g ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) ) |
27 |
24 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∼ 𝐸 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ ( 𝐸 ( -g ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) ) |
28 |
|
simp2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ ( 𝐸 ( -g ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) → 𝐸 ∈ 𝐵 ) |
29 |
27 28
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∼ 𝐸 → 𝐸 ∈ 𝐵 ) ) |
30 |
17 29
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] ∼ → 𝐸 ∈ 𝐵 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → ( 𝐸 ∈ [ 𝑥 ] ∼ → 𝐸 ∈ 𝐵 ) ) |
32 |
15 31
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ ) → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) → 𝐸 ∈ 𝐵 ) ) |
33 |
32
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ → ( 𝐸 ∈ ( 1r ‘ 𝑄 ) → 𝐸 ∈ 𝐵 ) ) ) |
34 |
13 33
|
mpid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ → 𝐸 ∈ 𝐵 ) ) |
35 |
34
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 1r ‘ 𝑄 ) = [ 𝑥 ] ∼ → 𝐸 ∈ 𝐵 ) ) |
36 |
12 35
|
mpd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |