Metamath Proof Explorer


Theorem rngqiprngfulem2

Description: Lemma 2 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
rngqiprngfu.t · = ( .r𝑅 )
rngqiprngfu.1 1 = ( 1r𝐽 )
rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
rngqiprngfu.q 𝑄 = ( 𝑅 /s )
rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
Assertion rngqiprngfulem2 ( 𝜑𝐸𝐵 )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
2 rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
4 rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
5 rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
6 rngqiprngfu.t · = ( .r𝑅 )
7 rngqiprngfu.1 1 = ( 1r𝐽 )
8 rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngfu.q 𝑄 = ( 𝑅 /s )
10 rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
11 rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
12 1 2 3 4 5 6 7 8 9 10 rngqiprngfulem1 ( 𝜑 → ∃ 𝑥𝐵 ( 1r𝑄 ) = [ 𝑥 ] )
13 11 adantr ( ( 𝜑𝑥𝐵 ) → 𝐸 ∈ ( 1r𝑄 ) )
14 eleq2 ( ( 1r𝑄 ) = [ 𝑥 ] → ( 𝐸 ∈ ( 1r𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ) )
15 14 adantl ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → ( 𝐸 ∈ ( 1r𝑄 ) ↔ 𝐸 ∈ [ 𝑥 ] ) )
16 elecg ( ( 𝐸 ∈ ( 1r𝑄 ) ∧ 𝑥𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] 𝑥 𝐸 ) )
17 11 16 sylan ( ( 𝜑𝑥𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] 𝑥 𝐸 ) )
18 rngabl ( 𝑅 ∈ Rng → 𝑅 ∈ Abel )
19 1 18 syl ( 𝜑𝑅 ∈ Abel )
20 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
21 5 20 2idlss ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼𝐵 )
22 2 21 syl ( 𝜑𝐼𝐵 )
23 19 22 jca ( 𝜑 → ( 𝑅 ∈ Abel ∧ 𝐼𝐵 ) )
24 23 adantr ( ( 𝜑𝑥𝐵 ) → ( 𝑅 ∈ Abel ∧ 𝐼𝐵 ) )
25 eqid ( -g𝑅 ) = ( -g𝑅 )
26 5 25 8 eqgabl ( ( 𝑅 ∈ Abel ∧ 𝐼𝐵 ) → ( 𝑥 𝐸 ↔ ( 𝑥𝐵𝐸𝐵 ∧ ( 𝐸 ( -g𝑅 ) 𝑥 ) ∈ 𝐼 ) ) )
27 24 26 syl ( ( 𝜑𝑥𝐵 ) → ( 𝑥 𝐸 ↔ ( 𝑥𝐵𝐸𝐵 ∧ ( 𝐸 ( -g𝑅 ) 𝑥 ) ∈ 𝐼 ) ) )
28 simp2 ( ( 𝑥𝐵𝐸𝐵 ∧ ( 𝐸 ( -g𝑅 ) 𝑥 ) ∈ 𝐼 ) → 𝐸𝐵 )
29 27 28 biimtrdi ( ( 𝜑𝑥𝐵 ) → ( 𝑥 𝐸𝐸𝐵 ) )
30 17 29 sylbid ( ( 𝜑𝑥𝐵 ) → ( 𝐸 ∈ [ 𝑥 ] 𝐸𝐵 ) )
31 30 adantr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → ( 𝐸 ∈ [ 𝑥 ] 𝐸𝐵 ) )
32 15 31 sylbid ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1r𝑄 ) = [ 𝑥 ] ) → ( 𝐸 ∈ ( 1r𝑄 ) → 𝐸𝐵 ) )
33 32 ex ( ( 𝜑𝑥𝐵 ) → ( ( 1r𝑄 ) = [ 𝑥 ] → ( 𝐸 ∈ ( 1r𝑄 ) → 𝐸𝐵 ) ) )
34 13 33 mpid ( ( 𝜑𝑥𝐵 ) → ( ( 1r𝑄 ) = [ 𝑥 ] 𝐸𝐵 ) )
35 34 rexlimdva ( 𝜑 → ( ∃ 𝑥𝐵 ( 1r𝑄 ) = [ 𝑥 ] 𝐸𝐵 ) )
36 12 35 mpd ( 𝜑𝐸𝐵 )