Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
|
2 |
|
rngqiprngfu.i |
|
3 |
|
rngqiprngfu.j |
|
4 |
|
rngqiprngfu.u |
|
5 |
|
rngqiprngfu.b |
|
6 |
|
rngqiprngfu.t |
|
7 |
|
rngqiprngfu.1 |
|
8 |
|
rngqiprngfu.g |
|
9 |
|
rngqiprngfu.q |
|
10 |
|
rngqiprngfu.v |
|
11 |
|
rngqiprngfu.e |
|
12 |
1 2 3 4 5 6 7 8 9 10
|
rngqiprngfulem1 |
|
13 |
11
|
adantr |
|
14 |
|
eleq2 |
|
15 |
14
|
adantl |
|
16 |
|
elecg |
|
17 |
11 16
|
sylan |
|
18 |
|
rngabl |
|
19 |
1 18
|
syl |
|
20 |
|
eqid |
|
21 |
5 20
|
2idlss |
|
22 |
2 21
|
syl |
|
23 |
19 22
|
jca |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
5 25 8
|
eqgabl |
|
27 |
24 26
|
syl |
|
28 |
|
simp2 |
|
29 |
27 28
|
biimtrdi |
|
30 |
17 29
|
sylbid |
|
31 |
30
|
adantr |
|
32 |
15 31
|
sylbid |
|
33 |
32
|
ex |
|
34 |
13 33
|
mpid |
|
35 |
34
|
rexlimdva |
|
36 |
12 35
|
mpd |
|