Metamath Proof Explorer


Theorem rngqiprngfulem2

Description: Lemma 2 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φ R Rng
rngqiprngfu.i φ I 2Ideal R
rngqiprngfu.j J = R 𝑠 I
rngqiprngfu.u φ J Ring
rngqiprngfu.b B = Base R
rngqiprngfu.t · ˙ = R
rngqiprngfu.1 1 ˙ = 1 J
rngqiprngfu.g ˙ = R ~ QG I
rngqiprngfu.q Q = R / 𝑠 ˙
rngqiprngfu.v φ Q Ring
rngqiprngfu.e φ E 1 Q
Assertion rngqiprngfulem2 φ E B

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φ R Rng
2 rngqiprngfu.i φ I 2Ideal R
3 rngqiprngfu.j J = R 𝑠 I
4 rngqiprngfu.u φ J Ring
5 rngqiprngfu.b B = Base R
6 rngqiprngfu.t · ˙ = R
7 rngqiprngfu.1 1 ˙ = 1 J
8 rngqiprngfu.g ˙ = R ~ QG I
9 rngqiprngfu.q Q = R / 𝑠 ˙
10 rngqiprngfu.v φ Q Ring
11 rngqiprngfu.e φ E 1 Q
12 1 2 3 4 5 6 7 8 9 10 rngqiprngfulem1 φ x B 1 Q = x ˙
13 11 adantr φ x B E 1 Q
14 eleq2 1 Q = x ˙ E 1 Q E x ˙
15 14 adantl φ x B 1 Q = x ˙ E 1 Q E x ˙
16 elecg E 1 Q x B E x ˙ x ˙ E
17 11 16 sylan φ x B E x ˙ x ˙ E
18 rngabl R Rng R Abel
19 1 18 syl φ R Abel
20 eqid 2Ideal R = 2Ideal R
21 5 20 2idlss I 2Ideal R I B
22 2 21 syl φ I B
23 19 22 jca φ R Abel I B
24 23 adantr φ x B R Abel I B
25 eqid - R = - R
26 5 25 8 eqgabl R Abel I B x ˙ E x B E B E - R x I
27 24 26 syl φ x B x ˙ E x B E B E - R x I
28 simp2 x B E B E - R x I E B
29 27 28 biimtrdi φ x B x ˙ E E B
30 17 29 sylbid φ x B E x ˙ E B
31 30 adantr φ x B 1 Q = x ˙ E x ˙ E B
32 15 31 sylbid φ x B 1 Q = x ˙ E 1 Q E B
33 32 ex φ x B 1 Q = x ˙ E 1 Q E B
34 13 33 mpid φ x B 1 Q = x ˙ E B
35 34 rexlimdva φ x B 1 Q = x ˙ E B
36 12 35 mpd φ E B