Description: Lemma 2 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngqiprngfu.r | |
|
rngqiprngfu.i | |
||
rngqiprngfu.j | |
||
rngqiprngfu.u | |
||
rngqiprngfu.b | |
||
rngqiprngfu.t | |
||
rngqiprngfu.1 | |
||
rngqiprngfu.g | |
||
rngqiprngfu.q | |
||
rngqiprngfu.v | |
||
rngqiprngfu.e | |
||
Assertion | rngqiprngfulem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.r | |
|
2 | rngqiprngfu.i | |
|
3 | rngqiprngfu.j | |
|
4 | rngqiprngfu.u | |
|
5 | rngqiprngfu.b | |
|
6 | rngqiprngfu.t | |
|
7 | rngqiprngfu.1 | |
|
8 | rngqiprngfu.g | |
|
9 | rngqiprngfu.q | |
|
10 | rngqiprngfu.v | |
|
11 | rngqiprngfu.e | |
|
12 | 1 2 3 4 5 6 7 8 9 10 | rngqiprngfulem1 | |
13 | 11 | adantr | |
14 | eleq2 | |
|
15 | 14 | adantl | |
16 | elecg | |
|
17 | 11 16 | sylan | |
18 | rngabl | |
|
19 | 1 18 | syl | |
20 | eqid | |
|
21 | 5 20 | 2idlss | |
22 | 2 21 | syl | |
23 | 19 22 | jca | |
24 | 23 | adantr | |
25 | eqid | |
|
26 | 5 25 8 | eqgabl | |
27 | 24 26 | syl | |
28 | simp2 | |
|
29 | 27 28 | syl6bi | |
30 | 17 29 | sylbid | |
31 | 30 | adantr | |
32 | 15 31 | sylbid | |
33 | 32 | ex | |
34 | 13 33 | mpid | |
35 | 34 | rexlimdva | |
36 | 12 35 | mpd | |