Metamath Proof Explorer


Theorem rngqiprngfulem2

Description: Lemma 2 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φRRng
rngqiprngfu.i φI2IdealR
rngqiprngfu.j J=R𝑠I
rngqiprngfu.u φJRing
rngqiprngfu.b B=BaseR
rngqiprngfu.t ·˙=R
rngqiprngfu.1 1˙=1J
rngqiprngfu.g ˙=R~QGI
rngqiprngfu.q Q=R/𝑠˙
rngqiprngfu.v φQRing
rngqiprngfu.e φE1Q
Assertion rngqiprngfulem2 φEB

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φRRng
2 rngqiprngfu.i φI2IdealR
3 rngqiprngfu.j J=R𝑠I
4 rngqiprngfu.u φJRing
5 rngqiprngfu.b B=BaseR
6 rngqiprngfu.t ·˙=R
7 rngqiprngfu.1 1˙=1J
8 rngqiprngfu.g ˙=R~QGI
9 rngqiprngfu.q Q=R/𝑠˙
10 rngqiprngfu.v φQRing
11 rngqiprngfu.e φE1Q
12 1 2 3 4 5 6 7 8 9 10 rngqiprngfulem1 φxB1Q=x˙
13 11 adantr φxBE1Q
14 eleq2 1Q=x˙E1QEx˙
15 14 adantl φxB1Q=x˙E1QEx˙
16 elecg E1QxBEx˙x˙E
17 11 16 sylan φxBEx˙x˙E
18 rngabl RRngRAbel
19 1 18 syl φRAbel
20 eqid 2IdealR=2IdealR
21 5 20 2idlss I2IdealRIB
22 2 21 syl φIB
23 19 22 jca φRAbelIB
24 23 adantr φxBRAbelIB
25 eqid -R=-R
26 5 25 8 eqgabl RAbelIBx˙ExBEBE-RxI
27 24 26 syl φxBx˙ExBEBE-RxI
28 simp2 xBEBE-RxIEB
29 27 28 syl6bi φxBx˙EEB
30 17 29 sylbid φxBEx˙EB
31 30 adantr φxB1Q=x˙Ex˙EB
32 15 31 sylbid φxB1Q=x˙E1QEB
33 32 ex φxB1Q=x˙E1QEB
34 13 33 mpid φxB1Q=x˙EB
35 34 rexlimdva φxB1Q=x˙EB
36 12 35 mpd φEB