Metamath Proof Explorer


Theorem rngqiprngu

Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φ R Rng
rngqiprngfu.i φ I 2Ideal R
rngqiprngfu.j J = R 𝑠 I
rngqiprngfu.u φ J Ring
rngqiprngfu.b B = Base R
rngqiprngfu.t · ˙ = R
rngqiprngfu.1 1 ˙ = 1 J
rngqiprngfu.g ˙ = R ~ QG I
rngqiprngfu.q Q = R / 𝑠 ˙
rngqiprngfu.v φ Q Ring
rngqiprngfu.e φ E 1 Q
rngqiprngfu.m - ˙ = - R
rngqiprngfu.a + ˙ = + R
rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
Assertion rngqiprngu φ 1 R = U

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φ R Rng
2 rngqiprngfu.i φ I 2Ideal R
3 rngqiprngfu.j J = R 𝑠 I
4 rngqiprngfu.u φ J Ring
5 rngqiprngfu.b B = Base R
6 rngqiprngfu.t · ˙ = R
7 rngqiprngfu.1 1 ˙ = 1 J
8 rngqiprngfu.g ˙ = R ~ QG I
9 rngqiprngfu.q Q = R / 𝑠 ˙
10 rngqiprngfu.v φ Q Ring
11 rngqiprngfu.e φ E 1 Q
12 rngqiprngfu.m - ˙ = - R
13 rngqiprngfu.a + ˙ = + R
14 rngqiprngfu.n U = E - ˙ 1 ˙ · ˙ E + ˙ 1 ˙
15 eqid Q × 𝑠 J = Q × 𝑠 J
16 15 10 4 xpsringd φ Q × 𝑠 J Ring
17 eqid Base Q = Base Q
18 eqid x B x ˙ 1 ˙ · ˙ x = x B x ˙ 1 ˙ · ˙ x
19 1 2 3 4 5 6 7 8 9 17 15 18 rngqiprngim φ x B x ˙ 1 ˙ · ˙ x R RngIso Q × 𝑠 J
20 rngimcnv x B x ˙ 1 ˙ · ˙ x R RngIso Q × 𝑠 J x B x ˙ 1 ˙ · ˙ x -1 Q × 𝑠 J RngIso R
21 19 20 syl φ x B x ˙ 1 ˙ · ˙ x -1 Q × 𝑠 J RngIso R
22 rngisomring1 Q × 𝑠 J Ring R Rng x B x ˙ 1 ˙ · ˙ x -1 Q × 𝑠 J RngIso R 1 R = x B x ˙ 1 ˙ · ˙ x -1 1 Q × 𝑠 J
23 16 1 21 22 syl3anc φ 1 R = x B x ˙ 1 ˙ · ˙ x -1 1 Q × 𝑠 J
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 rngqiprngfu φ x B x ˙ 1 ˙ · ˙ x U = E ˙ 1 ˙
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rngqipring1 φ 1 Q × 𝑠 J = E ˙ 1 ˙
26 24 25 eqtr4d φ x B x ˙ 1 ˙ · ˙ x U = 1 Q × 𝑠 J
27 eqid Base Q × 𝑠 J = Base Q × 𝑠 J
28 5 27 rngimf1o x B x ˙ 1 ˙ · ˙ x R RngIso Q × 𝑠 J x B x ˙ 1 ˙ · ˙ x : B 1-1 onto Base Q × 𝑠 J
29 19 28 syl φ x B x ˙ 1 ˙ · ˙ x : B 1-1 onto Base Q × 𝑠 J
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 φ U B
31 eqid 1 Q × 𝑠 J = 1 Q × 𝑠 J
32 27 31 ringidcl Q × 𝑠 J Ring 1 Q × 𝑠 J Base Q × 𝑠 J
33 16 32 syl φ 1 Q × 𝑠 J Base Q × 𝑠 J
34 f1ocnvfvb x B x ˙ 1 ˙ · ˙ x : B 1-1 onto Base Q × 𝑠 J U B 1 Q × 𝑠 J Base Q × 𝑠 J x B x ˙ 1 ˙ · ˙ x U = 1 Q × 𝑠 J x B x ˙ 1 ˙ · ˙ x -1 1 Q × 𝑠 J = U
35 29 30 33 34 syl3anc φ x B x ˙ 1 ˙ · ˙ x U = 1 Q × 𝑠 J x B x ˙ 1 ˙ · ˙ x -1 1 Q × 𝑠 J = U
36 26 35 mpbid φ x B x ˙ 1 ˙ · ˙ x -1 1 Q × 𝑠 J = U
37 23 36 eqtrd φ 1 R = U