Metamath Proof Explorer


Theorem ring2idlqus1

Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypotheses ring2idlqus1.t ·˙=R
ring2idlqus1.1 1˙=1R𝑠I
ring2idlqus1.m -˙=-R
ring2idlqus1.a +˙=+R
Assertion ring2idlqus1 RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIRRing1R=U-˙1˙·˙U+˙1˙

Proof

Step Hyp Ref Expression
1 ring2idlqus1.t ·˙=R
2 ring2idlqus1.1 1˙=1R𝑠I
3 ring2idlqus1.m -˙=-R
4 ring2idlqus1.a +˙=+R
5 simpr R𝑠IRingR/𝑠R~QGIRingR/𝑠R~QGIRing
6 5 adantl RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingR/𝑠R~QGIRing
7 6 ancli RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingRRngI2IdealRR𝑠IRingR/𝑠R~QGIRingR/𝑠R~QGIRing
8 7 3adant3 RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIRRngI2IdealRR𝑠IRingR/𝑠R~QGIRingR/𝑠R~QGIRing
9 simpl RRngI2IdealRRRng
10 9 adantr RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingRRng
11 simpr RRngI2IdealRI2IdealR
12 11 adantr RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingI2IdealR
13 eqid R𝑠I=R𝑠I
14 simpl R𝑠IRingR/𝑠R~QGIRingR𝑠IRing
15 14 adantl RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingR𝑠IRing
16 eqid R/𝑠R~QGI=R/𝑠R~QGI
17 10 12 13 15 16 rngringbdlem2 RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingR/𝑠R~QGIRingRRing
18 8 17 syl RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIRRing
19 9 3ad2ant1 RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIRRng
20 11 3ad2ant1 RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGII2IdealR
21 simp2l RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIR𝑠IRing
22 eqid BaseR=BaseR
23 eqid R~QGI=R~QGI
24 6 3adant3 RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIR/𝑠R~QGIRing
25 simp3 RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIU1R/𝑠R~QGI
26 eqid U-˙1˙·˙U+˙1˙=U-˙1˙·˙U+˙1˙
27 19 20 13 21 22 1 2 23 16 24 25 3 4 26 rngqiprngu RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGI1R=U-˙1˙·˙U+˙1˙
28 18 27 jca RRngI2IdealRR𝑠IRingR/𝑠R~QGIRingU1R/𝑠R~QGIRRing1R=U-˙1˙·˙U+˙1˙