Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ring2idlqus1.t | |
|
ring2idlqus1.1 | |
||
ring2idlqus1.m | |
||
ring2idlqus1.a | |
||
Assertion | ring2idlqus1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring2idlqus1.t | |
|
2 | ring2idlqus1.1 | |
|
3 | ring2idlqus1.m | |
|
4 | ring2idlqus1.a | |
|
5 | simpr | |
|
6 | 5 | adantl | |
7 | 6 | ancli | |
8 | 7 | 3adant3 | |
9 | simpl | |
|
10 | 9 | adantr | |
11 | simpr | |
|
12 | 11 | adantr | |
13 | eqid | |
|
14 | simpl | |
|
15 | 14 | adantl | |
16 | eqid | |
|
17 | 10 12 13 15 16 | rngringbdlem2 | |
18 | 8 17 | syl | |
19 | 9 | 3ad2ant1 | |
20 | 11 | 3ad2ant1 | |
21 | simp2l | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | 6 | 3adant3 | |
25 | simp3 | |
|
26 | eqid | |
|
27 | 19 20 13 21 22 1 2 23 16 24 25 3 4 26 | rngqiprngu | |
28 | 18 27 | jca | |