| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ring2idlqus1.t |
|- .x. = ( .r ` R ) |
| 2 |
|
ring2idlqus1.1 |
|- .1. = ( 1r ` ( R |`s I ) ) |
| 3 |
|
ring2idlqus1.m |
|- .- = ( -g ` R ) |
| 4 |
|
ring2idlqus1.a |
|- .+ = ( +g ` R ) |
| 5 |
|
simpr |
|- ( ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) -> ( R /s ( R ~QG I ) ) e. Ring ) |
| 6 |
5
|
adantl |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) -> ( R /s ( R ~QG I ) ) e. Ring ) |
| 7 |
6
|
ancli |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) -> ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) /\ ( R /s ( R ~QG I ) ) e. Ring ) ) |
| 8 |
7
|
3adant3 |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) /\ ( R /s ( R ~QG I ) ) e. Ring ) ) |
| 9 |
|
simpl |
|- ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) -> R e. Rng ) |
| 10 |
9
|
adantr |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) -> R e. Rng ) |
| 11 |
|
simpr |
|- ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) -> I e. ( 2Ideal ` R ) ) |
| 12 |
11
|
adantr |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) -> I e. ( 2Ideal ` R ) ) |
| 13 |
|
eqid |
|- ( R |`s I ) = ( R |`s I ) |
| 14 |
|
simpl |
|- ( ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) -> ( R |`s I ) e. Ring ) |
| 15 |
14
|
adantl |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) -> ( R |`s I ) e. Ring ) |
| 16 |
|
eqid |
|- ( R /s ( R ~QG I ) ) = ( R /s ( R ~QG I ) ) |
| 17 |
10 12 13 15 16
|
rngringbdlem2 |
|- ( ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) ) /\ ( R /s ( R ~QG I ) ) e. Ring ) -> R e. Ring ) |
| 18 |
8 17
|
syl |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> R e. Ring ) |
| 19 |
9
|
3ad2ant1 |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> R e. Rng ) |
| 20 |
11
|
3ad2ant1 |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> I e. ( 2Ideal ` R ) ) |
| 21 |
|
simp2l |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> ( R |`s I ) e. Ring ) |
| 22 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 23 |
|
eqid |
|- ( R ~QG I ) = ( R ~QG I ) |
| 24 |
6
|
3adant3 |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> ( R /s ( R ~QG I ) ) e. Ring ) |
| 25 |
|
simp3 |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) |
| 26 |
|
eqid |
|- ( ( U .- ( .1. .x. U ) ) .+ .1. ) = ( ( U .- ( .1. .x. U ) ) .+ .1. ) |
| 27 |
19 20 13 21 22 1 2 23 16 24 25 3 4 26
|
rngqiprngu |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> ( 1r ` R ) = ( ( U .- ( .1. .x. U ) ) .+ .1. ) ) |
| 28 |
18 27
|
jca |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) ) /\ ( ( R |`s I ) e. Ring /\ ( R /s ( R ~QG I ) ) e. Ring ) /\ U e. ( 1r ` ( R /s ( R ~QG I ) ) ) ) -> ( R e. Ring /\ ( 1r ` R ) = ( ( U .- ( .1. .x. U ) ) .+ .1. ) ) ) |