Metamath Proof Explorer


Theorem f1ocnvfvb

Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004)

Ref Expression
Assertion f1ocnvfvb F:A1-1 ontoBCADBFC=DF-1D=C

Proof

Step Hyp Ref Expression
1 f1ocnvfv F:A1-1 ontoBCAFC=DF-1D=C
2 1 3adant3 F:A1-1 ontoBCADBFC=DF-1D=C
3 fveq2 C=F-1DFC=FF-1D
4 3 eqcoms F-1D=CFC=FF-1D
5 f1ocnvfv2 F:A1-1 ontoBDBFF-1D=D
6 5 eqeq2d F:A1-1 ontoBDBFC=FF-1DFC=D
7 4 6 imbitrid F:A1-1 ontoBDBF-1D=CFC=D
8 7 3adant2 F:A1-1 ontoBCADBF-1D=CFC=D
9 2 8 impbid F:A1-1 ontoBCADBFC=DF-1D=C