Metamath Proof Explorer


Theorem rngqiprngfulem3

Description: Lemma 3 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φRRng
rngqiprngfu.i φI2IdealR
rngqiprngfu.j J=R𝑠I
rngqiprngfu.u φJRing
rngqiprngfu.b B=BaseR
rngqiprngfu.t ·˙=R
rngqiprngfu.1 1˙=1J
rngqiprngfu.g ˙=R~QGI
rngqiprngfu.q Q=R/𝑠˙
rngqiprngfu.v φQRing
rngqiprngfu.e φE1Q
rngqiprngfu.m -˙=-R
rngqiprngfu.a +˙=+R
rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
Assertion rngqiprngfulem3 φUB

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φRRng
2 rngqiprngfu.i φI2IdealR
3 rngqiprngfu.j J=R𝑠I
4 rngqiprngfu.u φJRing
5 rngqiprngfu.b B=BaseR
6 rngqiprngfu.t ·˙=R
7 rngqiprngfu.1 1˙=1J
8 rngqiprngfu.g ˙=R~QGI
9 rngqiprngfu.q Q=R/𝑠˙
10 rngqiprngfu.v φQRing
11 rngqiprngfu.e φE1Q
12 rngqiprngfu.m -˙=-R
13 rngqiprngfu.a +˙=+R
14 rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
15 rnggrp RRngRGrp
16 1 15 syl φRGrp
17 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2 φEB
18 1 2 3 4 5 6 7 rngqiprng1elbas φ1˙B
19 5 6 rngcl RRng1˙BEB1˙·˙EB
20 1 18 17 19 syl3anc φ1˙·˙EB
21 5 12 grpsubcl RGrpEB1˙·˙EBE-˙1˙·˙EB
22 16 17 20 21 syl3anc φE-˙1˙·˙EB
23 5 13 16 22 18 grpcld φE-˙1˙·˙E+˙1˙B
24 14 23 eqeltrid φUB