Description: Lemma 3 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngqiprngfu.r | |
|
rngqiprngfu.i | |
||
rngqiprngfu.j | |
||
rngqiprngfu.u | |
||
rngqiprngfu.b | |
||
rngqiprngfu.t | |
||
rngqiprngfu.1 | |
||
rngqiprngfu.g | |
||
rngqiprngfu.q | |
||
rngqiprngfu.v | |
||
rngqiprngfu.e | |
||
rngqiprngfu.m | |
||
rngqiprngfu.a | |
||
rngqiprngfu.n | |
||
Assertion | rngqiprngfulem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.r | |
|
2 | rngqiprngfu.i | |
|
3 | rngqiprngfu.j | |
|
4 | rngqiprngfu.u | |
|
5 | rngqiprngfu.b | |
|
6 | rngqiprngfu.t | |
|
7 | rngqiprngfu.1 | |
|
8 | rngqiprngfu.g | |
|
9 | rngqiprngfu.q | |
|
10 | rngqiprngfu.v | |
|
11 | rngqiprngfu.e | |
|
12 | rngqiprngfu.m | |
|
13 | rngqiprngfu.a | |
|
14 | rngqiprngfu.n | |
|
15 | rnggrp | |
|
16 | 1 15 | syl | |
17 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprngfulem2 | |
18 | 1 2 3 4 5 6 7 | rngqiprng1elbas | |
19 | 5 6 | rngcl | |
20 | 1 18 17 19 | syl3anc | |
21 | 5 12 | grpsubcl | |
22 | 16 17 20 21 | syl3anc | |
23 | 5 13 16 22 18 | grpcld | |
24 | 14 23 | eqeltrid | |