| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
| 4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
| 6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
| 11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
| 12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
| 13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
| 14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
| 15 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
| 16 |
1 15
|
syl |
|- ( ph -> R e. Grp ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprngfulem2 |
|- ( ph -> E e. B ) |
| 18 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
| 19 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ .1. e. B /\ E e. B ) -> ( .1. .x. E ) e. B ) |
| 20 |
1 18 17 19
|
syl3anc |
|- ( ph -> ( .1. .x. E ) e. B ) |
| 21 |
5 12
|
grpsubcl |
|- ( ( R e. Grp /\ E e. B /\ ( .1. .x. E ) e. B ) -> ( E .- ( .1. .x. E ) ) e. B ) |
| 22 |
16 17 20 21
|
syl3anc |
|- ( ph -> ( E .- ( .1. .x. E ) ) e. B ) |
| 23 |
5 13 16 22 18
|
grpcld |
|- ( ph -> ( ( E .- ( .1. .x. E ) ) .+ .1. ) e. B ) |
| 24 |
14 23
|
eqeltrid |
|- ( ph -> U e. B ) |