Metamath Proof Explorer


Theorem rngqiprngfulem3

Description: Lemma 3 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r
|- ( ph -> R e. Rng )
rngqiprngfu.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngqiprngfu.j
|- J = ( R |`s I )
rngqiprngfu.u
|- ( ph -> J e. Ring )
rngqiprngfu.b
|- B = ( Base ` R )
rngqiprngfu.t
|- .x. = ( .r ` R )
rngqiprngfu.1
|- .1. = ( 1r ` J )
rngqiprngfu.g
|- .~ = ( R ~QG I )
rngqiprngfu.q
|- Q = ( R /s .~ )
rngqiprngfu.v
|- ( ph -> Q e. Ring )
rngqiprngfu.e
|- ( ph -> E e. ( 1r ` Q ) )
rngqiprngfu.m
|- .- = ( -g ` R )
rngqiprngfu.a
|- .+ = ( +g ` R )
rngqiprngfu.n
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
Assertion rngqiprngfulem3
|- ( ph -> U e. B )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r
 |-  ( ph -> R e. Rng )
2 rngqiprngfu.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rngqiprngfu.j
 |-  J = ( R |`s I )
4 rngqiprngfu.u
 |-  ( ph -> J e. Ring )
5 rngqiprngfu.b
 |-  B = ( Base ` R )
6 rngqiprngfu.t
 |-  .x. = ( .r ` R )
7 rngqiprngfu.1
 |-  .1. = ( 1r ` J )
8 rngqiprngfu.g
 |-  .~ = ( R ~QG I )
9 rngqiprngfu.q
 |-  Q = ( R /s .~ )
10 rngqiprngfu.v
 |-  ( ph -> Q e. Ring )
11 rngqiprngfu.e
 |-  ( ph -> E e. ( 1r ` Q ) )
12 rngqiprngfu.m
 |-  .- = ( -g ` R )
13 rngqiprngfu.a
 |-  .+ = ( +g ` R )
14 rngqiprngfu.n
 |-  U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
15 rnggrp
 |-  ( R e. Rng -> R e. Grp )
16 1 15 syl
 |-  ( ph -> R e. Grp )
17 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2
 |-  ( ph -> E e. B )
18 1 2 3 4 5 6 7 rngqiprng1elbas
 |-  ( ph -> .1. e. B )
19 5 6 rngcl
 |-  ( ( R e. Rng /\ .1. e. B /\ E e. B ) -> ( .1. .x. E ) e. B )
20 1 18 17 19 syl3anc
 |-  ( ph -> ( .1. .x. E ) e. B )
21 5 12 grpsubcl
 |-  ( ( R e. Grp /\ E e. B /\ ( .1. .x. E ) e. B ) -> ( E .- ( .1. .x. E ) ) e. B )
22 16 17 20 21 syl3anc
 |-  ( ph -> ( E .- ( .1. .x. E ) ) e. B )
23 5 13 16 22 18 grpcld
 |-  ( ph -> ( ( E .- ( .1. .x. E ) ) .+ .1. ) e. B )
24 14 23 eqeltrid
 |-  ( ph -> U e. B )