Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
11 |
|
rngqiprngfu.e |
|- ( ph -> E e. ( 1r ` Q ) ) |
12 |
|
rngqiprngfu.m |
|- .- = ( -g ` R ) |
13 |
|
rngqiprngfu.a |
|- .+ = ( +g ` R ) |
14 |
|
rngqiprngfu.n |
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. ) |
15 |
14
|
oveq2i |
|- ( E .- U ) = ( E .- ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) |
16 |
15
|
a1i |
|- ( ph -> ( E .- U ) = ( E .- ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) ) |
17 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
18 |
1 17
|
syl |
|- ( ph -> R e. Abel ) |
19 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprngfulem2 |
|- ( ph -> E e. B ) |
20 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
21 |
1 20
|
syl |
|- ( ph -> R e. Grp ) |
22 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
23 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ .1. e. B /\ E e. B ) -> ( .1. .x. E ) e. B ) |
24 |
1 22 19 23
|
syl3anc |
|- ( ph -> ( .1. .x. E ) e. B ) |
25 |
5 12
|
grpsubcl |
|- ( ( R e. Grp /\ E e. B /\ ( .1. .x. E ) e. B ) -> ( E .- ( .1. .x. E ) ) e. B ) |
26 |
21 19 24 25
|
syl3anc |
|- ( ph -> ( E .- ( .1. .x. E ) ) e. B ) |
27 |
5 13 12 18 19 26 22
|
ablsubsub4 |
|- ( ph -> ( ( E .- ( E .- ( .1. .x. E ) ) ) .- .1. ) = ( E .- ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) ) |
28 |
5 12 18 19 24
|
ablnncan |
|- ( ph -> ( E .- ( E .- ( .1. .x. E ) ) ) = ( .1. .x. E ) ) |
29 |
28
|
oveq1d |
|- ( ph -> ( ( E .- ( E .- ( .1. .x. E ) ) ) .- .1. ) = ( ( .1. .x. E ) .- .1. ) ) |
30 |
16 27 29
|
3eqtr2d |
|- ( ph -> ( E .- U ) = ( ( .1. .x. E ) .- .1. ) ) |
31 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
32 |
4 31
|
syl |
|- ( ph -> J e. Rng ) |
33 |
3 32
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
34 |
1 2 33
|
rng2idlnsg |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
35 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
36 |
34 35
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
37 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ E e. B ) -> ( .1. .x. E ) e. ( Base ` J ) ) |
38 |
19 37
|
mpdan |
|- ( ph -> ( .1. .x. E ) e. ( Base ` J ) ) |
39 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
40 |
2 3 39
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
41 |
38 40
|
eleqtrd |
|- ( ph -> ( .1. .x. E ) e. I ) |
42 |
39 7
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
43 |
4 42
|
syl |
|- ( ph -> .1. e. ( Base ` J ) ) |
44 |
43 40
|
eleqtrd |
|- ( ph -> .1. e. I ) |
45 |
|
eqid |
|- ( -g ` J ) = ( -g ` J ) |
46 |
12 3 45
|
subgsub |
|- ( ( I e. ( SubGrp ` R ) /\ ( .1. .x. E ) e. I /\ .1. e. I ) -> ( ( .1. .x. E ) .- .1. ) = ( ( .1. .x. E ) ( -g ` J ) .1. ) ) |
47 |
36 41 44 46
|
syl3anc |
|- ( ph -> ( ( .1. .x. E ) .- .1. ) = ( ( .1. .x. E ) ( -g ` J ) .1. ) ) |
48 |
4
|
ringgrpd |
|- ( ph -> J e. Grp ) |
49 |
39 45
|
grpsubcl |
|- ( ( J e. Grp /\ ( .1. .x. E ) e. ( Base ` J ) /\ .1. e. ( Base ` J ) ) -> ( ( .1. .x. E ) ( -g ` J ) .1. ) e. ( Base ` J ) ) |
50 |
48 38 43 49
|
syl3anc |
|- ( ph -> ( ( .1. .x. E ) ( -g ` J ) .1. ) e. ( Base ` J ) ) |
51 |
47 50
|
eqeltrd |
|- ( ph -> ( ( .1. .x. E ) .- .1. ) e. ( Base ` J ) ) |
52 |
51 40
|
eleqtrd |
|- ( ph -> ( ( .1. .x. E ) .- .1. ) e. I ) |
53 |
30 52
|
eqeltrd |
|- ( ph -> ( E .- U ) e. I ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
|- ( ph -> U e. B ) |
55 |
5 12 8
|
qusecsub |
|- ( ( ( R e. Abel /\ I e. ( SubGrp ` R ) ) /\ ( U e. B /\ E e. B ) ) -> ( [ U ] .~ = [ E ] .~ <-> ( E .- U ) e. I ) ) |
56 |
18 36 54 19 55
|
syl22anc |
|- ( ph -> ( [ U ] .~ = [ E ] .~ <-> ( E .- U ) e. I ) ) |
57 |
53 56
|
mpbird |
|- ( ph -> [ U ] .~ = [ E ] .~ ) |