Metamath Proof Explorer


Theorem rngqiprngfulem4

Description: Lemma 4 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r
|- ( ph -> R e. Rng )
rngqiprngfu.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngqiprngfu.j
|- J = ( R |`s I )
rngqiprngfu.u
|- ( ph -> J e. Ring )
rngqiprngfu.b
|- B = ( Base ` R )
rngqiprngfu.t
|- .x. = ( .r ` R )
rngqiprngfu.1
|- .1. = ( 1r ` J )
rngqiprngfu.g
|- .~ = ( R ~QG I )
rngqiprngfu.q
|- Q = ( R /s .~ )
rngqiprngfu.v
|- ( ph -> Q e. Ring )
rngqiprngfu.e
|- ( ph -> E e. ( 1r ` Q ) )
rngqiprngfu.m
|- .- = ( -g ` R )
rngqiprngfu.a
|- .+ = ( +g ` R )
rngqiprngfu.n
|- U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
Assertion rngqiprngfulem4
|- ( ph -> [ U ] .~ = [ E ] .~ )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r
 |-  ( ph -> R e. Rng )
2 rngqiprngfu.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rngqiprngfu.j
 |-  J = ( R |`s I )
4 rngqiprngfu.u
 |-  ( ph -> J e. Ring )
5 rngqiprngfu.b
 |-  B = ( Base ` R )
6 rngqiprngfu.t
 |-  .x. = ( .r ` R )
7 rngqiprngfu.1
 |-  .1. = ( 1r ` J )
8 rngqiprngfu.g
 |-  .~ = ( R ~QG I )
9 rngqiprngfu.q
 |-  Q = ( R /s .~ )
10 rngqiprngfu.v
 |-  ( ph -> Q e. Ring )
11 rngqiprngfu.e
 |-  ( ph -> E e. ( 1r ` Q ) )
12 rngqiprngfu.m
 |-  .- = ( -g ` R )
13 rngqiprngfu.a
 |-  .+ = ( +g ` R )
14 rngqiprngfu.n
 |-  U = ( ( E .- ( .1. .x. E ) ) .+ .1. )
15 14 oveq2i
 |-  ( E .- U ) = ( E .- ( ( E .- ( .1. .x. E ) ) .+ .1. ) )
16 15 a1i
 |-  ( ph -> ( E .- U ) = ( E .- ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) )
17 rngabl
 |-  ( R e. Rng -> R e. Abel )
18 1 17 syl
 |-  ( ph -> R e. Abel )
19 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2
 |-  ( ph -> E e. B )
20 rnggrp
 |-  ( R e. Rng -> R e. Grp )
21 1 20 syl
 |-  ( ph -> R e. Grp )
22 1 2 3 4 5 6 7 rngqiprng1elbas
 |-  ( ph -> .1. e. B )
23 5 6 rngcl
 |-  ( ( R e. Rng /\ .1. e. B /\ E e. B ) -> ( .1. .x. E ) e. B )
24 1 22 19 23 syl3anc
 |-  ( ph -> ( .1. .x. E ) e. B )
25 5 12 grpsubcl
 |-  ( ( R e. Grp /\ E e. B /\ ( .1. .x. E ) e. B ) -> ( E .- ( .1. .x. E ) ) e. B )
26 21 19 24 25 syl3anc
 |-  ( ph -> ( E .- ( .1. .x. E ) ) e. B )
27 5 13 12 18 19 26 22 ablsubsub4
 |-  ( ph -> ( ( E .- ( E .- ( .1. .x. E ) ) ) .- .1. ) = ( E .- ( ( E .- ( .1. .x. E ) ) .+ .1. ) ) )
28 5 12 18 19 24 ablnncan
 |-  ( ph -> ( E .- ( E .- ( .1. .x. E ) ) ) = ( .1. .x. E ) )
29 28 oveq1d
 |-  ( ph -> ( ( E .- ( E .- ( .1. .x. E ) ) ) .- .1. ) = ( ( .1. .x. E ) .- .1. ) )
30 16 27 29 3eqtr2d
 |-  ( ph -> ( E .- U ) = ( ( .1. .x. E ) .- .1. ) )
31 ringrng
 |-  ( J e. Ring -> J e. Rng )
32 4 31 syl
 |-  ( ph -> J e. Rng )
33 3 32 eqeltrrid
 |-  ( ph -> ( R |`s I ) e. Rng )
34 1 2 33 rng2idlnsg
 |-  ( ph -> I e. ( NrmSGrp ` R ) )
35 nsgsubg
 |-  ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) )
36 34 35 syl
 |-  ( ph -> I e. ( SubGrp ` R ) )
37 1 2 3 4 5 6 7 rngqiprngghmlem1
 |-  ( ( ph /\ E e. B ) -> ( .1. .x. E ) e. ( Base ` J ) )
38 19 37 mpdan
 |-  ( ph -> ( .1. .x. E ) e. ( Base ` J ) )
39 eqid
 |-  ( Base ` J ) = ( Base ` J )
40 2 3 39 2idlbas
 |-  ( ph -> ( Base ` J ) = I )
41 38 40 eleqtrd
 |-  ( ph -> ( .1. .x. E ) e. I )
42 39 7 ringidcl
 |-  ( J e. Ring -> .1. e. ( Base ` J ) )
43 4 42 syl
 |-  ( ph -> .1. e. ( Base ` J ) )
44 43 40 eleqtrd
 |-  ( ph -> .1. e. I )
45 eqid
 |-  ( -g ` J ) = ( -g ` J )
46 12 3 45 subgsub
 |-  ( ( I e. ( SubGrp ` R ) /\ ( .1. .x. E ) e. I /\ .1. e. I ) -> ( ( .1. .x. E ) .- .1. ) = ( ( .1. .x. E ) ( -g ` J ) .1. ) )
47 36 41 44 46 syl3anc
 |-  ( ph -> ( ( .1. .x. E ) .- .1. ) = ( ( .1. .x. E ) ( -g ` J ) .1. ) )
48 4 ringgrpd
 |-  ( ph -> J e. Grp )
49 39 45 grpsubcl
 |-  ( ( J e. Grp /\ ( .1. .x. E ) e. ( Base ` J ) /\ .1. e. ( Base ` J ) ) -> ( ( .1. .x. E ) ( -g ` J ) .1. ) e. ( Base ` J ) )
50 48 38 43 49 syl3anc
 |-  ( ph -> ( ( .1. .x. E ) ( -g ` J ) .1. ) e. ( Base ` J ) )
51 47 50 eqeltrd
 |-  ( ph -> ( ( .1. .x. E ) .- .1. ) e. ( Base ` J ) )
52 51 40 eleqtrd
 |-  ( ph -> ( ( .1. .x. E ) .- .1. ) e. I )
53 30 52 eqeltrd
 |-  ( ph -> ( E .- U ) e. I )
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3
 |-  ( ph -> U e. B )
55 5 12 8 qusecsub
 |-  ( ( ( R e. Abel /\ I e. ( SubGrp ` R ) ) /\ ( U e. B /\ E e. B ) ) -> ( [ U ] .~ = [ E ] .~ <-> ( E .- U ) e. I ) )
56 18 36 54 19 55 syl22anc
 |-  ( ph -> ( [ U ] .~ = [ E ] .~ <-> ( E .- U ) e. I ) )
57 53 56 mpbird
 |-  ( ph -> [ U ] .~ = [ E ] .~ )