Metamath Proof Explorer


Theorem rngqiprngfulem4

Description: Lemma 4 for rngqiprngfu . (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
rngqiprngfu.t · = ( .r𝑅 )
rngqiprngfu.1 1 = ( 1r𝐽 )
rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
rngqiprngfu.q 𝑄 = ( 𝑅 /s )
rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
rngqiprngfu.m = ( -g𝑅 )
rngqiprngfu.a + = ( +g𝑅 )
rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
Assertion rngqiprngfulem4 ( 𝜑 → [ 𝑈 ] = [ 𝐸 ] )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r ( 𝜑𝑅 ∈ Rng )
2 rngqiprngfu.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rngqiprngfu.j 𝐽 = ( 𝑅s 𝐼 )
4 rngqiprngfu.u ( 𝜑𝐽 ∈ Ring )
5 rngqiprngfu.b 𝐵 = ( Base ‘ 𝑅 )
6 rngqiprngfu.t · = ( .r𝑅 )
7 rngqiprngfu.1 1 = ( 1r𝐽 )
8 rngqiprngfu.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngfu.q 𝑄 = ( 𝑅 /s )
10 rngqiprngfu.v ( 𝜑𝑄 ∈ Ring )
11 rngqiprngfu.e ( 𝜑𝐸 ∈ ( 1r𝑄 ) )
12 rngqiprngfu.m = ( -g𝑅 )
13 rngqiprngfu.a + = ( +g𝑅 )
14 rngqiprngfu.n 𝑈 = ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 )
15 14 oveq2i ( 𝐸 𝑈 ) = ( 𝐸 ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) )
16 15 a1i ( 𝜑 → ( 𝐸 𝑈 ) = ( 𝐸 ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) ) )
17 rngabl ( 𝑅 ∈ Rng → 𝑅 ∈ Abel )
18 1 17 syl ( 𝜑𝑅 ∈ Abel )
19 1 2 3 4 5 6 7 8 9 10 11 rngqiprngfulem2 ( 𝜑𝐸𝐵 )
20 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
21 1 20 syl ( 𝜑𝑅 ∈ Grp )
22 1 2 3 4 5 6 7 rngqiprng1elbas ( 𝜑1𝐵 )
23 5 6 rngcl ( ( 𝑅 ∈ Rng ∧ 1𝐵𝐸𝐵 ) → ( 1 · 𝐸 ) ∈ 𝐵 )
24 1 22 19 23 syl3anc ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐵 )
25 5 12 grpsubcl ( ( 𝑅 ∈ Grp ∧ 𝐸𝐵 ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( 𝐸 ( 1 · 𝐸 ) ) ∈ 𝐵 )
26 21 19 24 25 syl3anc ( 𝜑 → ( 𝐸 ( 1 · 𝐸 ) ) ∈ 𝐵 )
27 5 13 12 18 19 26 22 ablsubsub4 ( 𝜑 → ( ( 𝐸 ( 𝐸 ( 1 · 𝐸 ) ) ) 1 ) = ( 𝐸 ( ( 𝐸 ( 1 · 𝐸 ) ) + 1 ) ) )
28 5 12 18 19 24 ablnncan ( 𝜑 → ( 𝐸 ( 𝐸 ( 1 · 𝐸 ) ) ) = ( 1 · 𝐸 ) )
29 28 oveq1d ( 𝜑 → ( ( 𝐸 ( 𝐸 ( 1 · 𝐸 ) ) ) 1 ) = ( ( 1 · 𝐸 ) 1 ) )
30 16 27 29 3eqtr2d ( 𝜑 → ( 𝐸 𝑈 ) = ( ( 1 · 𝐸 ) 1 ) )
31 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
32 4 31 syl ( 𝜑𝐽 ∈ Rng )
33 3 32 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
34 1 2 33 rng2idlnsg ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
35 nsgsubg ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
36 34 35 syl ( 𝜑𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
37 1 2 3 4 5 6 7 rngqiprngghmlem1 ( ( 𝜑𝐸𝐵 ) → ( 1 · 𝐸 ) ∈ ( Base ‘ 𝐽 ) )
38 19 37 mpdan ( 𝜑 → ( 1 · 𝐸 ) ∈ ( Base ‘ 𝐽 ) )
39 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
40 2 3 39 2idlbas ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 )
41 38 40 eleqtrd ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐼 )
42 39 7 ringidcl ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) )
43 4 42 syl ( 𝜑1 ∈ ( Base ‘ 𝐽 ) )
44 43 40 eleqtrd ( 𝜑1𝐼 )
45 eqid ( -g𝐽 ) = ( -g𝐽 )
46 12 3 45 subgsub ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1 · 𝐸 ) ∈ 𝐼1𝐼 ) → ( ( 1 · 𝐸 ) 1 ) = ( ( 1 · 𝐸 ) ( -g𝐽 ) 1 ) )
47 36 41 44 46 syl3anc ( 𝜑 → ( ( 1 · 𝐸 ) 1 ) = ( ( 1 · 𝐸 ) ( -g𝐽 ) 1 ) )
48 4 ringgrpd ( 𝜑𝐽 ∈ Grp )
49 39 45 grpsubcl ( ( 𝐽 ∈ Grp ∧ ( 1 · 𝐸 ) ∈ ( Base ‘ 𝐽 ) ∧ 1 ∈ ( Base ‘ 𝐽 ) ) → ( ( 1 · 𝐸 ) ( -g𝐽 ) 1 ) ∈ ( Base ‘ 𝐽 ) )
50 48 38 43 49 syl3anc ( 𝜑 → ( ( 1 · 𝐸 ) ( -g𝐽 ) 1 ) ∈ ( Base ‘ 𝐽 ) )
51 47 50 eqeltrd ( 𝜑 → ( ( 1 · 𝐸 ) 1 ) ∈ ( Base ‘ 𝐽 ) )
52 51 40 eleqtrd ( 𝜑 → ( ( 1 · 𝐸 ) 1 ) ∈ 𝐼 )
53 30 52 eqeltrd ( 𝜑 → ( 𝐸 𝑈 ) ∈ 𝐼 )
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 rngqiprngfulem3 ( 𝜑𝑈𝐵 )
55 5 12 8 qusecsub ( ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑈𝐵𝐸𝐵 ) ) → ( [ 𝑈 ] = [ 𝐸 ] ↔ ( 𝐸 𝑈 ) ∈ 𝐼 ) )
56 18 36 54 19 55 syl22anc ( 𝜑 → ( [ 𝑈 ] = [ 𝐸 ] ↔ ( 𝐸 𝑈 ) ∈ 𝐼 ) )
57 53 56 mpbird ( 𝜑 → [ 𝑈 ] = [ 𝐸 ] )