Step |
Hyp |
Ref |
Expression |
1 |
|
rngqiprngfu.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rngqiprngfu.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rngqiprngfu.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rngqiprngfu.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rngqiprngfu.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rngqiprngfu.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rngqiprngfu.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngfu.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngfu.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngfu.v |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
11 |
|
rngqiprngfu.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 1r ‘ 𝑄 ) ) |
12 |
|
rngqiprngfu.m |
⊢ − = ( -g ‘ 𝑅 ) |
13 |
|
rngqiprngfu.a |
⊢ + = ( +g ‘ 𝑅 ) |
14 |
|
rngqiprngfu.n |
⊢ 𝑈 = ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) |
15 |
14
|
oveq2i |
⊢ ( 𝐸 − 𝑈 ) = ( 𝐸 − ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝐸 − 𝑈 ) = ( 𝐸 − ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) ) |
17 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
18 |
1 17
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
19 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprngfulem2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
20 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
22 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
23 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ) → ( 1 · 𝐸 ) ∈ 𝐵 ) |
24 |
1 22 19 23
|
syl3anc |
⊢ ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐵 ) |
25 |
5 12
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸 ) ∈ 𝐵 ) → ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ) |
26 |
21 19 24 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 − ( 1 · 𝐸 ) ) ∈ 𝐵 ) |
27 |
5 13 12 18 19 26 22
|
ablsubsub4 |
⊢ ( 𝜑 → ( ( 𝐸 − ( 𝐸 − ( 1 · 𝐸 ) ) ) − 1 ) = ( 𝐸 − ( ( 𝐸 − ( 1 · 𝐸 ) ) + 1 ) ) ) |
28 |
5 12 18 19 24
|
ablnncan |
⊢ ( 𝜑 → ( 𝐸 − ( 𝐸 − ( 1 · 𝐸 ) ) ) = ( 1 · 𝐸 ) ) |
29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 − ( 𝐸 − ( 1 · 𝐸 ) ) ) − 1 ) = ( ( 1 · 𝐸 ) − 1 ) ) |
30 |
16 27 29
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐸 − 𝑈 ) = ( ( 1 · 𝐸 ) − 1 ) ) |
31 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
32 |
4 31
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
33 |
3 32
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
34 |
1 2 33
|
rng2idlnsg |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
35 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
37 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ) → ( 1 · 𝐸 ) ∈ ( Base ‘ 𝐽 ) ) |
38 |
19 37
|
mpdan |
⊢ ( 𝜑 → ( 1 · 𝐸 ) ∈ ( Base ‘ 𝐽 ) ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
40 |
2 3 39
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
41 |
38 40
|
eleqtrd |
⊢ ( 𝜑 → ( 1 · 𝐸 ) ∈ 𝐼 ) |
42 |
39 7
|
ringidcl |
⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
43 |
4 42
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝐽 ) ) |
44 |
43 40
|
eleqtrd |
⊢ ( 𝜑 → 1 ∈ 𝐼 ) |
45 |
|
eqid |
⊢ ( -g ‘ 𝐽 ) = ( -g ‘ 𝐽 ) |
46 |
12 3 45
|
subgsub |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1 · 𝐸 ) ∈ 𝐼 ∧ 1 ∈ 𝐼 ) → ( ( 1 · 𝐸 ) − 1 ) = ( ( 1 · 𝐸 ) ( -g ‘ 𝐽 ) 1 ) ) |
47 |
36 41 44 46
|
syl3anc |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) − 1 ) = ( ( 1 · 𝐸 ) ( -g ‘ 𝐽 ) 1 ) ) |
48 |
4
|
ringgrpd |
⊢ ( 𝜑 → 𝐽 ∈ Grp ) |
49 |
39 45
|
grpsubcl |
⊢ ( ( 𝐽 ∈ Grp ∧ ( 1 · 𝐸 ) ∈ ( Base ‘ 𝐽 ) ∧ 1 ∈ ( Base ‘ 𝐽 ) ) → ( ( 1 · 𝐸 ) ( -g ‘ 𝐽 ) 1 ) ∈ ( Base ‘ 𝐽 ) ) |
50 |
48 38 43 49
|
syl3anc |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) ( -g ‘ 𝐽 ) 1 ) ∈ ( Base ‘ 𝐽 ) ) |
51 |
47 50
|
eqeltrd |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) − 1 ) ∈ ( Base ‘ 𝐽 ) ) |
52 |
51 40
|
eleqtrd |
⊢ ( 𝜑 → ( ( 1 · 𝐸 ) − 1 ) ∈ 𝐼 ) |
53 |
30 52
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 − 𝑈 ) ∈ 𝐼 ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
rngqiprngfulem3 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
55 |
5 12 8
|
qusecsub |
⊢ ( ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ) ) → ( [ 𝑈 ] ∼ = [ 𝐸 ] ∼ ↔ ( 𝐸 − 𝑈 ) ∈ 𝐼 ) ) |
56 |
18 36 54 19 55
|
syl22anc |
⊢ ( 𝜑 → ( [ 𝑈 ] ∼ = [ 𝐸 ] ∼ ↔ ( 𝐸 − 𝑈 ) ∈ 𝐼 ) ) |
57 |
53 56
|
mpbird |
⊢ ( 𝜑 → [ 𝑈 ] ∼ = [ 𝐸 ] ∼ ) |