Metamath Proof Explorer


Theorem eqgabl

Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses eqgabl.x X=BaseG
eqgabl.n -˙=-G
eqgabl.r ˙=G~QGS
Assertion eqgabl GAbelSXA˙BAXBXB-˙AS

Proof

Step Hyp Ref Expression
1 eqgabl.x X=BaseG
2 eqgabl.n -˙=-G
3 eqgabl.r ˙=G~QGS
4 eqid invgG=invgG
5 eqid +G=+G
6 1 4 5 3 eqgval GAbelSXA˙BAXBXinvgGA+GBS
7 simpll GAbelSXAXBXGAbel
8 ablgrp GAbelGGrp
9 8 ad2antrr GAbelSXAXBXGGrp
10 simprl GAbelSXAXBXAX
11 1 4 grpinvcl GGrpAXinvgGAX
12 9 10 11 syl2anc GAbelSXAXBXinvgGAX
13 simprr GAbelSXAXBXBX
14 1 5 ablcom GAbelinvgGAXBXinvgGA+GB=B+GinvgGA
15 7 12 13 14 syl3anc GAbelSXAXBXinvgGA+GB=B+GinvgGA
16 1 5 4 2 grpsubval BXAXB-˙A=B+GinvgGA
17 13 10 16 syl2anc GAbelSXAXBXB-˙A=B+GinvgGA
18 15 17 eqtr4d GAbelSXAXBXinvgGA+GB=B-˙A
19 18 eleq1d GAbelSXAXBXinvgGA+GBSB-˙AS
20 19 pm5.32da GAbelSXAXBXinvgGA+GBSAXBXB-˙AS
21 df-3an AXBXinvgGA+GBSAXBXinvgGA+GBS
22 df-3an AXBXB-˙ASAXBXB-˙AS
23 20 21 22 3bitr4g GAbelSXAXBXinvgGA+GBSAXBXB-˙AS
24 6 23 bitrd GAbelSXA˙BAXBXB-˙AS