Description: Lemma 1 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngqiprngfu.r | |
|
rngqiprngfu.i | |
||
rngqiprngfu.j | |
||
rngqiprngfu.u | |
||
rngqiprngfu.b | |
||
rngqiprngfu.t | |
||
rngqiprngfu.1 | |
||
rngqiprngfu.g | |
||
rngqiprngfu.q | |
||
rngqiprngfu.v | |
||
Assertion | rngqiprngfulem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.r | |
|
2 | rngqiprngfu.i | |
|
3 | rngqiprngfu.j | |
|
4 | rngqiprngfu.u | |
|
5 | rngqiprngfu.b | |
|
6 | rngqiprngfu.t | |
|
7 | rngqiprngfu.1 | |
|
8 | rngqiprngfu.g | |
|
9 | rngqiprngfu.q | |
|
10 | rngqiprngfu.v | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | ringidcl | |
14 | 10 13 | syl | |
15 | 9 | a1i | |
16 | 5 | a1i | |
17 | 8 | ovexi | |
18 | 17 | a1i | |
19 | 15 16 18 1 | qusbas | |
20 | 14 19 | eleqtrrd | |
21 | fvexd | |
|
22 | elqsg | |
|
23 | 21 22 | syl | |
24 | 20 23 | mpbid | |