| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngqiprngfu.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rngqiprngfu.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rngqiprngfu.j |
|- J = ( R |`s I ) |
| 4 |
|
rngqiprngfu.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rngqiprngfu.b |
|- B = ( Base ` R ) |
| 6 |
|
rngqiprngfu.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rngqiprngfu.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngfu.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngfu.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngfu.v |
|- ( ph -> Q e. Ring ) |
| 11 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 12 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
| 13 |
11 12
|
ringidcl |
|- ( Q e. Ring -> ( 1r ` Q ) e. ( Base ` Q ) ) |
| 14 |
10 13
|
syl |
|- ( ph -> ( 1r ` Q ) e. ( Base ` Q ) ) |
| 15 |
9
|
a1i |
|- ( ph -> Q = ( R /s .~ ) ) |
| 16 |
5
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
| 17 |
8
|
ovexi |
|- .~ e. _V |
| 18 |
17
|
a1i |
|- ( ph -> .~ e. _V ) |
| 19 |
15 16 18 1
|
qusbas |
|- ( ph -> ( B /. .~ ) = ( Base ` Q ) ) |
| 20 |
14 19
|
eleqtrrd |
|- ( ph -> ( 1r ` Q ) e. ( B /. .~ ) ) |
| 21 |
|
fvexd |
|- ( ph -> ( 1r ` Q ) e. _V ) |
| 22 |
|
elqsg |
|- ( ( 1r ` Q ) e. _V -> ( ( 1r ` Q ) e. ( B /. .~ ) <-> E. x e. B ( 1r ` Q ) = [ x ] .~ ) ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( ( 1r ` Q ) e. ( B /. .~ ) <-> E. x e. B ( 1r ` Q ) = [ x ] .~ ) ) |
| 24 |
20 23
|
mpbid |
|- ( ph -> E. x e. B ( 1r ` Q ) = [ x ] .~ ) |