Metamath Proof Explorer


Theorem rngqiprngfulem1

Description: Lemma 1 for rngqiprngfu (and lemma for rngqiprngu ). (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r
|- ( ph -> R e. Rng )
rngqiprngfu.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rngqiprngfu.j
|- J = ( R |`s I )
rngqiprngfu.u
|- ( ph -> J e. Ring )
rngqiprngfu.b
|- B = ( Base ` R )
rngqiprngfu.t
|- .x. = ( .r ` R )
rngqiprngfu.1
|- .1. = ( 1r ` J )
rngqiprngfu.g
|- .~ = ( R ~QG I )
rngqiprngfu.q
|- Q = ( R /s .~ )
rngqiprngfu.v
|- ( ph -> Q e. Ring )
Assertion rngqiprngfulem1
|- ( ph -> E. x e. B ( 1r ` Q ) = [ x ] .~ )

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r
 |-  ( ph -> R e. Rng )
2 rngqiprngfu.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rngqiprngfu.j
 |-  J = ( R |`s I )
4 rngqiprngfu.u
 |-  ( ph -> J e. Ring )
5 rngqiprngfu.b
 |-  B = ( Base ` R )
6 rngqiprngfu.t
 |-  .x. = ( .r ` R )
7 rngqiprngfu.1
 |-  .1. = ( 1r ` J )
8 rngqiprngfu.g
 |-  .~ = ( R ~QG I )
9 rngqiprngfu.q
 |-  Q = ( R /s .~ )
10 rngqiprngfu.v
 |-  ( ph -> Q e. Ring )
11 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
12 eqid
 |-  ( 1r ` Q ) = ( 1r ` Q )
13 11 12 ringidcl
 |-  ( Q e. Ring -> ( 1r ` Q ) e. ( Base ` Q ) )
14 10 13 syl
 |-  ( ph -> ( 1r ` Q ) e. ( Base ` Q ) )
15 9 a1i
 |-  ( ph -> Q = ( R /s .~ ) )
16 5 a1i
 |-  ( ph -> B = ( Base ` R ) )
17 8 ovexi
 |-  .~ e. _V
18 17 a1i
 |-  ( ph -> .~ e. _V )
19 15 16 18 1 qusbas
 |-  ( ph -> ( B /. .~ ) = ( Base ` Q ) )
20 14 19 eleqtrrd
 |-  ( ph -> ( 1r ` Q ) e. ( B /. .~ ) )
21 fvexd
 |-  ( ph -> ( 1r ` Q ) e. _V )
22 elqsg
 |-  ( ( 1r ` Q ) e. _V -> ( ( 1r ` Q ) e. ( B /. .~ ) <-> E. x e. B ( 1r ` Q ) = [ x ] .~ ) )
23 21 22 syl
 |-  ( ph -> ( ( 1r ` Q ) e. ( B /. .~ ) <-> E. x e. B ( 1r ` Q ) = [ x ] .~ ) )
24 20 23 mpbid
 |-  ( ph -> E. x e. B ( 1r ` Q ) = [ x ] .~ )