Metamath Proof Explorer


Theorem ring2idlqusb

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025)

Ref Expression
Assertion ring2idlqusb
|- ( R e. Rng -> ( R e. Ring <-> E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) ) )

Proof

Step Hyp Ref Expression
1 ring2idlqus
 |-  ( R e. Ring -> E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) )
2 simpll
 |-  ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) -> R e. Rng )
3 simplr
 |-  ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) -> i e. ( 2Ideal ` R ) )
4 eqid
 |-  ( R |`s i ) = ( R |`s i )
5 simpr
 |-  ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) -> ( R |`s i ) e. Ring )
6 eqid
 |-  ( R /s ( R ~QG i ) ) = ( R /s ( R ~QG i ) )
7 2 3 4 5 6 rngringbdlem2
 |-  ( ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) /\ ( R /s ( R ~QG i ) ) e. Ring ) -> R e. Ring )
8 7 expl
 |-  ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) -> ( ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) -> R e. Ring ) )
9 8 rexlimdva
 |-  ( R e. Rng -> ( E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) -> R e. Ring ) )
10 1 9 impbid2
 |-  ( R e. Rng -> ( R e. Ring <-> E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) ) )