Step |
Hyp |
Ref |
Expression |
1 |
|
ring2idlqus |
|- ( R e. Ring -> E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) ) |
2 |
|
simpll |
|- ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) -> R e. Rng ) |
3 |
|
simplr |
|- ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) -> i e. ( 2Ideal ` R ) ) |
4 |
|
eqid |
|- ( R |`s i ) = ( R |`s i ) |
5 |
|
simpr |
|- ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) -> ( R |`s i ) e. Ring ) |
6 |
|
eqid |
|- ( R /s ( R ~QG i ) ) = ( R /s ( R ~QG i ) ) |
7 |
2 3 4 5 6
|
rngringbdlem2 |
|- ( ( ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) /\ ( R |`s i ) e. Ring ) /\ ( R /s ( R ~QG i ) ) e. Ring ) -> R e. Ring ) |
8 |
7
|
expl |
|- ( ( R e. Rng /\ i e. ( 2Ideal ` R ) ) -> ( ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) -> R e. Ring ) ) |
9 |
8
|
rexlimdva |
|- ( R e. Rng -> ( E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) -> R e. Ring ) ) |
10 |
1 9
|
impbid2 |
|- ( R e. Rng -> ( R e. Ring <-> E. i e. ( 2Ideal ` R ) ( ( R |`s i ) e. Ring /\ ( R /s ( R ~QG i ) ) e. Ring ) ) ) |