Metamath Proof Explorer


Theorem 2idl1

Description: Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses 2idl0.u 𝐼 = ( 2Ideal ‘ 𝑅 )
2idl1.b 𝐵 = ( Base ‘ 𝑅 )
Assertion 2idl1 ( 𝑅 ∈ Ring → 𝐵𝐼 )

Proof

Step Hyp Ref Expression
1 2idl0.u 𝐼 = ( 2Ideal ‘ 𝑅 )
2 2idl1.b 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
4 3 2 lidl1 ( 𝑅 ∈ Ring → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) )
5 eqid ( LIdeal ‘ ( oppr𝑅 ) ) = ( LIdeal ‘ ( oppr𝑅 ) )
6 5 2 ridl1 ( 𝑅 ∈ Ring → 𝐵 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) )
7 4 6 elind ( 𝑅 ∈ Ring → 𝐵 ∈ ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr𝑅 ) ) ) )
8 eqid ( oppr𝑅 ) = ( oppr𝑅 )
9 3 8 5 1 2idlval 𝐼 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr𝑅 ) ) )
10 7 9 eleqtrrdi ( 𝑅 ∈ Ring → 𝐵𝐼 )