| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idl0.u |
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) |
| 2 |
|
2idl1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 4 |
3 2
|
lidl1 |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 5 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
| 6 |
5 2
|
ridl1 |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 7 |
4 6
|
elind |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 8 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 9 |
3 8 5 1
|
2idlval |
⊢ 𝐼 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 10 |
7 9
|
eleqtrrdi |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝐼 ) |