Metamath Proof Explorer


Theorem 2idl1

Description: Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses 2idl0.u
|- I = ( 2Ideal ` R )
2idl1.b
|- B = ( Base ` R )
Assertion 2idl1
|- ( R e. Ring -> B e. I )

Proof

Step Hyp Ref Expression
1 2idl0.u
 |-  I = ( 2Ideal ` R )
2 2idl1.b
 |-  B = ( Base ` R )
3 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
4 3 2 lidl1
 |-  ( R e. Ring -> B e. ( LIdeal ` R ) )
5 eqid
 |-  ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) )
6 5 2 ridl1
 |-  ( R e. Ring -> B e. ( LIdeal ` ( oppR ` R ) ) )
7 4 6 elind
 |-  ( R e. Ring -> B e. ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) )
8 eqid
 |-  ( oppR ` R ) = ( oppR ` R )
9 3 8 5 1 2idlval
 |-  I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) )
10 7 9 eleqtrrdi
 |-  ( R e. Ring -> B e. I )