| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idl0.u |
|- I = ( 2Ideal ` R ) |
| 2 |
|
2idl1.b |
|- B = ( Base ` R ) |
| 3 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 4 |
3 2
|
lidl1 |
|- ( R e. Ring -> B e. ( LIdeal ` R ) ) |
| 5 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
| 6 |
5 2
|
ridl1 |
|- ( R e. Ring -> B e. ( LIdeal ` ( oppR ` R ) ) ) |
| 7 |
4 6
|
elind |
|- ( R e. Ring -> B e. ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) ) |
| 8 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 9 |
3 8 5 1
|
2idlval |
|- I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) |
| 10 |
7 9
|
eleqtrrdi |
|- ( R e. Ring -> B e. I ) |