Metamath Proof Explorer


Theorem 2idl1

Description: Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses 2idl0.u I=2IdealR
2idl1.b B=BaseR
Assertion 2idl1 RRingBI

Proof

Step Hyp Ref Expression
1 2idl0.u I=2IdealR
2 2idl1.b B=BaseR
3 eqid LIdealR=LIdealR
4 3 2 lidl1 RRingBLIdealR
5 eqid LIdealopprR=LIdealopprR
6 5 2 ridl1 RRingBLIdealopprR
7 4 6 elind RRingBLIdealRLIdealopprR
8 eqid opprR=opprR
9 3 8 5 1 2idlval I=LIdealRLIdealopprR
10 7 9 eleqtrrdi RRingBI