Metamath Proof Explorer


Theorem rngringbd

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rngringbd.r φ R Rng
rngringbd.i φ I 2Ideal R
rngringbd.j J = R 𝑠 I
rngringbd.u φ J Ring
rngringbd.q Q = R / 𝑠 R ~ QG I
Assertion rngringbd φ R Ring Q Ring

Proof

Step Hyp Ref Expression
1 rngringbd.r φ R Rng
2 rngringbd.i φ I 2Ideal R
3 rngringbd.j J = R 𝑠 I
4 rngringbd.u φ J Ring
5 rngringbd.q Q = R / 𝑠 R ~ QG I
6 1 2 3 4 5 rngringbdlem1 φ R Ring Q Ring
7 1 2 3 4 5 rngringbdlem2 φ Q Ring R Ring
8 6 7 impbida φ R Ring Q Ring