Metamath Proof Explorer


Theorem rnglidlmcl

Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl . (Contributed by AV, 18-Feb-2025)

Ref Expression
Hypotheses rnglidlmcl.z 0˙=0R
rnglidlmcl.b B=BaseR
rnglidlmcl.t ·˙=R
rnglidlmcl.u U=LIdealR
Assertion rnglidlmcl RRngIU0˙IXBYIX·˙YI

Proof

Step Hyp Ref Expression
1 rnglidlmcl.z 0˙=0R
2 rnglidlmcl.b B=BaseR
3 rnglidlmcl.t ·˙=R
4 rnglidlmcl.u U=LIdealR
5 eqid +R=+R
6 4 2 5 3 islidl IUIBIxBaIbIx·˙a+RbI
7 oveq1 x=Xx·˙a=X·˙a
8 7 oveq1d x=Xx·˙a+Rb=X·˙a+Rb
9 8 eleq1d x=Xx·˙a+RbIX·˙a+RbI
10 9 ralbidv x=XbIx·˙a+RbIbIX·˙a+RbI
11 oveq2 a=YX·˙a=X·˙Y
12 11 oveq1d a=YX·˙a+Rb=X·˙Y+Rb
13 12 eleq1d a=YX·˙a+RbIX·˙Y+RbI
14 13 ralbidv a=YbIX·˙a+RbIbIX·˙Y+RbI
15 10 14 rspc2v XBYIxBaIbIx·˙a+RbIbIX·˙Y+RbI
16 15 adantl RRngIBI0˙IXBYIxBaIbIx·˙a+RbIbIX·˙Y+RbI
17 oveq2 b=0˙X·˙Y+Rb=X·˙Y+R0˙
18 17 eleq1d b=0˙X·˙Y+RbIX·˙Y+R0˙I
19 18 rspcv 0˙IbIX·˙Y+RbIX·˙Y+R0˙I
20 19 adantl RRngIBI0˙IbIX·˙Y+RbIX·˙Y+R0˙I
21 rnggrp RRngRGrp
22 21 3ad2ant1 RRngIBIRGrp
23 22 adantr RRngIBI0˙IRGrp
24 23 adantr RRngIBI0˙IXBYIRGrp
25 simpll1 RRngIBI0˙IXBYIRRng
26 simprl RRngIBI0˙IXBYIXB
27 ssel IBYIYB
28 27 3ad2ant2 RRngIBIYIYB
29 28 adantr RRngIBI0˙IYIYB
30 29 adantld RRngIBI0˙IXBYIYB
31 30 imp RRngIBI0˙IXBYIYB
32 2 3 rngcl RRngXBYBX·˙YB
33 25 26 31 32 syl3anc RRngIBI0˙IXBYIX·˙YB
34 2 5 1 24 33 grpridd RRngIBI0˙IXBYIX·˙Y+R0˙=X·˙Y
35 34 eleq1d RRngIBI0˙IXBYIX·˙Y+R0˙IX·˙YI
36 35 biimpd RRngIBI0˙IXBYIX·˙Y+R0˙IX·˙YI
37 36 ex RRngIBI0˙IXBYIX·˙Y+R0˙IX·˙YI
38 20 37 syl5d RRngIBI0˙IXBYIbIX·˙Y+RbIX·˙YI
39 38 imp RRngIBI0˙IXBYIbIX·˙Y+RbIX·˙YI
40 16 39 syld RRngIBI0˙IXBYIxBaIbIx·˙a+RbIX·˙YI
41 40 ex RRngIBI0˙IXBYIxBaIbIx·˙a+RbIX·˙YI
42 41 com23 RRngIBI0˙IxBaIbIx·˙a+RbIXBYIX·˙YI
43 42 ex RRngIBI0˙IxBaIbIx·˙a+RbIXBYIX·˙YI
44 43 com23 RRngIBIxBaIbIx·˙a+RbI0˙IXBYIX·˙YI
45 44 3exp RRngIBIxBaIbIx·˙a+RbI0˙IXBYIX·˙YI
46 45 3impd RRngIBIxBaIbIx·˙a+RbI0˙IXBYIX·˙YI
47 6 46 biimtrid RRngIU0˙IXBYIX·˙YI
48 47 3imp1 RRngIU0˙IXBYIX·˙YI