Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl . (Contributed by AV, 18-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnglidlmcl.z | |
|
rnglidlmcl.b | |
||
rnglidlmcl.t | |
||
rnglidlmcl.u | |
||
Assertion | rnglidlmcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnglidlmcl.z | |
|
2 | rnglidlmcl.b | |
|
3 | rnglidlmcl.t | |
|
4 | rnglidlmcl.u | |
|
5 | eqid | |
|
6 | 4 2 5 3 | islidl | |
7 | oveq1 | |
|
8 | 7 | oveq1d | |
9 | 8 | eleq1d | |
10 | 9 | ralbidv | |
11 | oveq2 | |
|
12 | 11 | oveq1d | |
13 | 12 | eleq1d | |
14 | 13 | ralbidv | |
15 | 10 14 | rspc2v | |
16 | 15 | adantl | |
17 | oveq2 | |
|
18 | 17 | eleq1d | |
19 | 18 | rspcv | |
20 | 19 | adantl | |
21 | rnggrp | |
|
22 | 21 | 3ad2ant1 | |
23 | 22 | adantr | |
24 | 23 | adantr | |
25 | simpll1 | |
|
26 | simprl | |
|
27 | ssel | |
|
28 | 27 | 3ad2ant2 | |
29 | 28 | adantr | |
30 | 29 | adantld | |
31 | 30 | imp | |
32 | 2 3 | rngcl | |
33 | 25 26 31 32 | syl3anc | |
34 | 2 5 1 24 33 | grpridd | |
35 | 34 | eleq1d | |
36 | 35 | biimpd | |
37 | 36 | ex | |
38 | 20 37 | syl5d | |
39 | 38 | imp | |
40 | 16 39 | syld | |
41 | 40 | ex | |
42 | 41 | com23 | |
43 | 42 | ex | |
44 | 43 | com23 | |
45 | 44 | 3exp | |
46 | 45 | 3impd | |
47 | 6 46 | biimtrid | |
48 | 47 | 3imp1 | |