| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnglidlmcl.z |
|
| 2 |
|
rnglidlmcl.b |
|
| 3 |
|
rnglidlmcl.t |
|
| 4 |
|
rnglidlmcl.u |
|
| 5 |
|
eqid |
|
| 6 |
4 2 5 3
|
islidl |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
oveq1d |
|
| 9 |
8
|
eleq1d |
|
| 10 |
9
|
ralbidv |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
oveq1d |
|
| 13 |
12
|
eleq1d |
|
| 14 |
13
|
ralbidv |
|
| 15 |
10 14
|
rspc2v |
|
| 16 |
15
|
adantl |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
eleq1d |
|
| 19 |
18
|
rspcv |
|
| 20 |
19
|
adantl |
|
| 21 |
|
rnggrp |
|
| 22 |
21
|
3ad2ant1 |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
adantr |
|
| 25 |
|
simpll1 |
|
| 26 |
|
simprl |
|
| 27 |
|
ssel |
|
| 28 |
27
|
3ad2ant2 |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantld |
|
| 31 |
30
|
imp |
|
| 32 |
2 3
|
rngcl |
|
| 33 |
25 26 31 32
|
syl3anc |
|
| 34 |
2 5 1 24 33
|
grpridd |
|
| 35 |
34
|
eleq1d |
|
| 36 |
35
|
biimpd |
|
| 37 |
36
|
ex |
|
| 38 |
20 37
|
syl5d |
|
| 39 |
38
|
imp |
|
| 40 |
16 39
|
syld |
|
| 41 |
40
|
ex |
|
| 42 |
41
|
com23 |
|
| 43 |
42
|
ex |
|
| 44 |
43
|
com23 |
|
| 45 |
44
|
3exp |
|
| 46 |
45
|
3impd |
|
| 47 |
6 46
|
biimtrid |
|
| 48 |
47
|
3imp1 |
|