| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
| 9 |
8
|
anim1i |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. e. B /\ ( A e. B /\ C e. B ) ) ) |
| 10 |
|
3anass |
|- ( ( .1. e. B /\ A e. B /\ C e. B ) <-> ( .1. e. B /\ ( A e. B /\ C e. B ) ) ) |
| 11 |
9 10
|
sylibr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. e. B /\ A e. B /\ C e. B ) ) |
| 12 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 13 |
5 12 6
|
rngdi |
|- ( ( R e. Rng /\ ( .1. e. B /\ A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) ) |
| 14 |
1 11 13
|
syl2an2r |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) ) |
| 15 |
3 12
|
ressplusg |
|- ( I e. ( 2Ideal ` R ) -> ( +g ` R ) = ( +g ` J ) ) |
| 16 |
2 15
|
syl |
|- ( ph -> ( +g ` R ) = ( +g ` J ) ) |
| 17 |
16
|
oveqd |
|- ( ph -> ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) ) |
| 19 |
14 18
|
eqtrd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) ) |