Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
|- ( ph -> .1. e. B ) |
9 |
8
|
anim1i |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. e. B /\ ( A e. B /\ C e. B ) ) ) |
10 |
|
3anass |
|- ( ( .1. e. B /\ A e. B /\ C e. B ) <-> ( .1. e. B /\ ( A e. B /\ C e. B ) ) ) |
11 |
9 10
|
sylibr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. e. B /\ A e. B /\ C e. B ) ) |
12 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
13 |
5 12 6
|
rngdi |
|- ( ( R e. Rng /\ ( .1. e. B /\ A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) ) |
14 |
1 11 13
|
syl2an2r |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) ) |
15 |
3 12
|
ressplusg |
|- ( I e. ( 2Ideal ` R ) -> ( +g ` R ) = ( +g ` J ) ) |
16 |
2 15
|
syl |
|- ( ph -> ( +g ` R ) = ( +g ` J ) ) |
17 |
16
|
oveqd |
|- ( ph -> ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) ) |
18 |
17
|
adantr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) ) |
19 |
14 18
|
eqtrd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) ) |