Metamath Proof Explorer


Theorem rngqiprngghmlem3

Description: Lemma 3 for rngqiprngghm . (Contributed by AV, 25-Feb-2025) (Proof shortened by AV, 24-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
Assertion rngqiprngghmlem3
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 1 2 3 4 5 6 7 rngqiprng1elbas
 |-  ( ph -> .1. e. B )
9 8 anim1i
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. e. B /\ ( A e. B /\ C e. B ) ) )
10 3anass
 |-  ( ( .1. e. B /\ A e. B /\ C e. B ) <-> ( .1. e. B /\ ( A e. B /\ C e. B ) ) )
11 9 10 sylibr
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. e. B /\ A e. B /\ C e. B ) )
12 eqid
 |-  ( +g ` R ) = ( +g ` R )
13 5 12 6 rngdi
 |-  ( ( R e. Rng /\ ( .1. e. B /\ A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) )
14 1 11 13 syl2an2r
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) )
15 3 12 ressplusg
 |-  ( I e. ( 2Ideal ` R ) -> ( +g ` R ) = ( +g ` J ) )
16 2 15 syl
 |-  ( ph -> ( +g ` R ) = ( +g ` J ) )
17 16 oveqd
 |-  ( ph -> ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) )
18 17 adantr
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) ( +g ` R ) ( .1. .x. C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) )
19 14 18 eqtrd
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. ( A ( +g ` R ) C ) ) = ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) )