Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
9 |
8
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 ∈ 𝐵 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
10 |
|
3anass |
⊢ ( ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 1 ∈ 𝐵 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
13 |
5 12 6
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 · ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) |
14 |
1 11 13
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 · ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g ‘ 𝑅 ) ( 1 · 𝐶 ) ) ) |
15 |
3 12
|
ressplusg |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐽 ) ) |
16 |
2 15
|
syl |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐽 ) ) |
17 |
16
|
oveqd |
⊢ ( 𝜑 → ( ( 1 · 𝐴 ) ( +g ‘ 𝑅 ) ( 1 · 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g ‘ 𝐽 ) ( 1 · 𝐶 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) ( +g ‘ 𝑅 ) ( 1 · 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g ‘ 𝐽 ) ( 1 · 𝐶 ) ) ) |
19 |
14 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 · ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g ‘ 𝐽 ) ( 1 · 𝐶 ) ) ) |