Metamath Proof Explorer


Theorem rngqiprngghmlem3

Description: Lemma 3 for rngqiprngghm . (Contributed by AV, 25-Feb-2025) (Proof shortened by AV, 24-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
Assertion rngqiprngghmlem3 ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 1 · ( 𝐴 ( +g𝑅 ) 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g𝐽 ) ( 1 · 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 1 2 3 4 5 6 7 rngqiprng1elbas ( 𝜑1𝐵 )
9 8 anim1i ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 1𝐵 ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
10 3anass ( ( 1𝐵𝐴𝐵𝐶𝐵 ) ↔ ( 1𝐵 ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
11 9 10 sylibr ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 1𝐵𝐴𝐵𝐶𝐵 ) )
12 eqid ( +g𝑅 ) = ( +g𝑅 )
13 5 12 6 rngdi ( ( 𝑅 ∈ Rng ∧ ( 1𝐵𝐴𝐵𝐶𝐵 ) ) → ( 1 · ( 𝐴 ( +g𝑅 ) 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g𝑅 ) ( 1 · 𝐶 ) ) )
14 1 11 13 syl2an2r ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 1 · ( 𝐴 ( +g𝑅 ) 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g𝑅 ) ( 1 · 𝐶 ) ) )
15 3 12 ressplusg ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → ( +g𝑅 ) = ( +g𝐽 ) )
16 2 15 syl ( 𝜑 → ( +g𝑅 ) = ( +g𝐽 ) )
17 16 oveqd ( 𝜑 → ( ( 1 · 𝐴 ) ( +g𝑅 ) ( 1 · 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g𝐽 ) ( 1 · 𝐶 ) ) )
18 17 adantr ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( ( 1 · 𝐴 ) ( +g𝑅 ) ( 1 · 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g𝐽 ) ( 1 · 𝐶 ) ) )
19 14 18 eqtrd ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 1 · ( 𝐴 ( +g𝑅 ) 𝐶 ) ) = ( ( 1 · 𝐴 ) ( +g𝐽 ) ( 1 · 𝐶 ) ) )