| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
| 9 |
4 8
|
syl |
|- ( ph -> J e. Rng ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> J e. Rng ) |
| 11 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) ) |
| 12 |
11
|
adantrr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. A ) e. ( Base ` J ) ) |
| 13 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ C e. B ) -> ( .1. .x. C ) e. ( Base ` J ) ) |
| 14 |
13
|
adantrl |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. C ) e. ( Base ` J ) ) |
| 15 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
| 16 |
|
eqid |
|- ( +g ` J ) = ( +g ` J ) |
| 17 |
15 16
|
rngacl |
|- ( ( J e. Rng /\ ( .1. .x. A ) e. ( Base ` J ) /\ ( .1. .x. C ) e. ( Base ` J ) ) -> ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) e. ( Base ` J ) ) |
| 18 |
10 12 14 17
|
syl3anc |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) e. ( Base ` J ) ) |