Metamath Proof Explorer


Theorem rngqiprngghmlem2

Description: Lemma 2 for rngqiprngghm . (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
Assertion rngqiprngghmlem2
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) e. ( Base ` J ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 ringrng
 |-  ( J e. Ring -> J e. Rng )
9 4 8 syl
 |-  ( ph -> J e. Rng )
10 9 adantr
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> J e. Rng )
11 1 2 3 4 5 6 7 rngqiprngghmlem1
 |-  ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) )
12 11 adantrr
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. A ) e. ( Base ` J ) )
13 1 2 3 4 5 6 7 rngqiprngghmlem1
 |-  ( ( ph /\ C e. B ) -> ( .1. .x. C ) e. ( Base ` J ) )
14 13 adantrl
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( .1. .x. C ) e. ( Base ` J ) )
15 eqid
 |-  ( Base ` J ) = ( Base ` J )
16 eqid
 |-  ( +g ` J ) = ( +g ` J )
17 15 16 rngacl
 |-  ( ( J e. Rng /\ ( .1. .x. A ) e. ( Base ` J ) /\ ( .1. .x. C ) e. ( Base ` J ) ) -> ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) e. ( Base ` J ) )
18 10 12 14 17 syl3anc
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( ( .1. .x. A ) ( +g ` J ) ( .1. .x. C ) ) e. ( Base ` J ) )