Step |
Hyp |
Ref |
Expression |
1 |
|
ecqusadd.i |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
2 |
|
ecqusadd.b |
|- B = ( Base ` R ) |
3 |
|
ecqusadd.g |
|- .~ = ( R ~QG I ) |
4 |
|
ecqusadd.q |
|- Q = ( R /s .~ ) |
5 |
1 2 3 4
|
ecqusadd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) ) |
6 |
1
|
elfvexd |
|- ( ph -> R e. _V ) |
7 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
8 |
|
subgrcl |
|- ( I e. ( SubGrp ` R ) -> R e. Grp ) |
9 |
1 7 8
|
3syl |
|- ( ph -> R e. Grp ) |
10 |
9
|
anim1i |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ ( A e. B /\ C e. B ) ) ) |
11 |
|
3anass |
|- ( ( R e. Grp /\ A e. B /\ C e. B ) <-> ( R e. Grp /\ ( A e. B /\ C e. B ) ) ) |
12 |
10 11
|
sylibr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ A e. B /\ C e. B ) ) |
13 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
14 |
2 13
|
grpcl |
|- ( ( R e. Grp /\ A e. B /\ C e. B ) -> ( A ( +g ` R ) C ) e. B ) |
15 |
12 14
|
syl |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( A ( +g ` R ) C ) e. B ) |
16 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
17 |
3 4 2 16
|
quseccl0 |
|- ( ( R e. _V /\ ( A ( +g ` R ) C ) e. B ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) ) |
18 |
6 15 17
|
syl2an2r |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) ) |
19 |
5 18
|
eqeltrrd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) e. ( Base ` Q ) ) |