Metamath Proof Explorer


Theorem ecqusaddcl

Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses ecqusadd.i
|- ( ph -> I e. ( NrmSGrp ` R ) )
ecqusadd.b
|- B = ( Base ` R )
ecqusadd.g
|- .~ = ( R ~QG I )
ecqusadd.q
|- Q = ( R /s .~ )
Assertion ecqusaddcl
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) e. ( Base ` Q ) )

Proof

Step Hyp Ref Expression
1 ecqusadd.i
 |-  ( ph -> I e. ( NrmSGrp ` R ) )
2 ecqusadd.b
 |-  B = ( Base ` R )
3 ecqusadd.g
 |-  .~ = ( R ~QG I )
4 ecqusadd.q
 |-  Q = ( R /s .~ )
5 1 2 3 4 ecqusadd
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) )
6 1 elfvexd
 |-  ( ph -> R e. _V )
7 nsgsubg
 |-  ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) )
8 subgrcl
 |-  ( I e. ( SubGrp ` R ) -> R e. Grp )
9 1 7 8 3syl
 |-  ( ph -> R e. Grp )
10 9 anim1i
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ ( A e. B /\ C e. B ) ) )
11 3anass
 |-  ( ( R e. Grp /\ A e. B /\ C e. B ) <-> ( R e. Grp /\ ( A e. B /\ C e. B ) ) )
12 10 11 sylibr
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ A e. B /\ C e. B ) )
13 eqid
 |-  ( +g ` R ) = ( +g ` R )
14 2 13 grpcl
 |-  ( ( R e. Grp /\ A e. B /\ C e. B ) -> ( A ( +g ` R ) C ) e. B )
15 12 14 syl
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( A ( +g ` R ) C ) e. B )
16 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
17 3 4 2 16 quseccl0
 |-  ( ( R e. _V /\ ( A ( +g ` R ) C ) e. B ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) )
18 6 15 17 syl2an2r
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) )
19 5 18 eqeltrrd
 |-  ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) e. ( Base ` Q ) )