| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecqusaddd.i |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
| 2 |
|
ecqusaddd.b |
|- B = ( Base ` R ) |
| 3 |
|
ecqusaddd.g |
|- .~ = ( R ~QG I ) |
| 4 |
|
ecqusaddd.q |
|- Q = ( R /s .~ ) |
| 5 |
1 2 3 4
|
ecqusaddd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) ) |
| 6 |
1
|
elfvexd |
|- ( ph -> R e. _V ) |
| 7 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
| 8 |
|
subgrcl |
|- ( I e. ( SubGrp ` R ) -> R e. Grp ) |
| 9 |
1 7 8
|
3syl |
|- ( ph -> R e. Grp ) |
| 10 |
9
|
anim1i |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ ( A e. B /\ C e. B ) ) ) |
| 11 |
|
3anass |
|- ( ( R e. Grp /\ A e. B /\ C e. B ) <-> ( R e. Grp /\ ( A e. B /\ C e. B ) ) ) |
| 12 |
10 11
|
sylibr |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ A e. B /\ C e. B ) ) |
| 13 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 14 |
2 13
|
grpcl |
|- ( ( R e. Grp /\ A e. B /\ C e. B ) -> ( A ( +g ` R ) C ) e. B ) |
| 15 |
12 14
|
syl |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( A ( +g ` R ) C ) e. B ) |
| 16 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 17 |
3 4 2 16
|
quseccl0 |
|- ( ( R e. _V /\ ( A ( +g ` R ) C ) e. B ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) ) |
| 18 |
6 15 17
|
syl2an2r |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) ) |
| 19 |
5 18
|
eqeltrrd |
|- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) e. ( Base ` Q ) ) |