| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecqusaddd.i |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 2 |
|
ecqusaddd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
ecqusaddd.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
| 4 |
|
ecqusaddd.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
| 5 |
1 2 3 4
|
ecqusaddd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ = ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ) |
| 6 |
1
|
elfvexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 7 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 8 |
|
subgrcl |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝑅 ∈ Grp ) |
| 9 |
1 7 8
|
3syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 10 |
9
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝑅 ∈ Grp ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
| 11 |
|
3anass |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Grp ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 14 |
2 13
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝐵 ) |
| 15 |
12 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝐵 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 17 |
3 4 2 16
|
quseccl0 |
⊢ ( ( 𝑅 ∈ V ∧ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝐵 ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
| 18 |
6 15 17
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
| 19 |
5 18
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ∈ ( Base ‘ 𝑄 ) ) |