Metamath Proof Explorer


Theorem rrvf2

Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1
|- ( ph -> P e. Prob )
rrvvf.1
|- ( ph -> X e. ( rRndVar ` P ) )
Assertion rrvf2
|- ( ph -> X : dom X --> RR )

Proof

Step Hyp Ref Expression
1 isrrvv.1
 |-  ( ph -> P e. Prob )
2 rrvvf.1
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 1 2 rrvvf
 |-  ( ph -> X : U. dom P --> RR )
4 1 2 rrvdm
 |-  ( ph -> dom X = U. dom P )
5 4 feq2d
 |-  ( ph -> ( X : dom X --> RR <-> X : U. dom P --> RR ) )
6 3 5 mpbird
 |-  ( ph -> X : dom X --> RR )