Metamath Proof Explorer


Theorem rrvf2

Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1 φPProb
rrvvf.1 φXRndVarP
Assertion rrvf2 φX:domX

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 rrvvf.1 φXRndVarP
3 1 2 rrvvf φX:domP
4 1 2 rrvdm φdomX=domP
5 4 feq2d φX:domXX:domP
6 3 5 mpbird φX:domX