Metamath Proof Explorer


Theorem rrvf2

Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1 φ P Prob
rrvvf.1 φ X RndVar P
Assertion rrvf2 φ X : dom X

Proof

Step Hyp Ref Expression
1 isrrvv.1 φ P Prob
2 rrvvf.1 φ X RndVar P
3 1 2 rrvvf φ X : dom P
4 1 2 rrvdm φ dom X = dom P
5 4 feq2d φ X : dom X X : dom P
6 3 5 mpbird φ X : dom X