Metamath Proof Explorer


Theorem rrvf2

Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1 ( 𝜑𝑃 ∈ Prob )
rrvvf.1 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
Assertion rrvf2 ( 𝜑𝑋 : dom 𝑋 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 isrrvv.1 ( 𝜑𝑃 ∈ Prob )
2 rrvvf.1 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
3 1 2 rrvvf ( 𝜑𝑋 : dom 𝑃 ⟶ ℝ )
4 1 2 rrvdm ( 𝜑 → dom 𝑋 = dom 𝑃 )
5 4 feq2d ( 𝜑 → ( 𝑋 : dom 𝑋 ⟶ ℝ ↔ 𝑋 : dom 𝑃 ⟶ ℝ ) )
6 3 5 mpbird ( 𝜑𝑋 : dom 𝑋 ⟶ ℝ )