Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2xpreen.r |
|- R = ( RR ^m { 1 , 2 } ) |
2 |
|
reex |
|- RR e. _V |
3 |
2 2
|
mpoex |
|- ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) e. _V |
4 |
|
f1oeq1 |
|- ( f = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) -> ( f : ( RR X. RR ) -1-1-onto-> R <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R ) ) |
5 |
|
eqid |
|- ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) |
6 |
1 5
|
rrx2xpref1o |
|- ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R |
7 |
3 4 6
|
ceqsexv2d |
|- E. f f : ( RR X. RR ) -1-1-onto-> R |
8 |
|
bren |
|- ( ( RR X. RR ) ~~ R <-> E. f f : ( RR X. RR ) -1-1-onto-> R ) |
9 |
7 8
|
mpbir |
|- ( RR X. RR ) ~~ R |
10 |
9
|
ensymi |
|- R ~~ ( RR X. RR ) |