| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2xpreen.r |  |-  R = ( RR ^m { 1 , 2 } ) | 
						
							| 2 |  | reex |  |-  RR e. _V | 
						
							| 3 | 2 2 | mpoex |  |-  ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) e. _V | 
						
							| 4 |  | f1oeq1 |  |-  ( f = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) -> ( f : ( RR X. RR ) -1-1-onto-> R <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R ) ) | 
						
							| 5 |  | eqid |  |-  ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) | 
						
							| 6 | 1 5 | rrx2xpref1o |  |-  ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R | 
						
							| 7 | 3 4 6 | ceqsexv2d |  |-  E. f f : ( RR X. RR ) -1-1-onto-> R | 
						
							| 8 |  | bren |  |-  ( ( RR X. RR ) ~~ R <-> E. f f : ( RR X. RR ) -1-1-onto-> R ) | 
						
							| 9 | 7 8 | mpbir |  |-  ( RR X. RR ) ~~ R | 
						
							| 10 | 9 | ensymi |  |-  R ~~ ( RR X. RR ) |