Metamath Proof Explorer


Theorem safesnsupfiub

Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)

Ref Expression
Hypotheses safesnsupfiub.small
|- ( ph -> ( O = (/) \/ O = 1o ) )
safesnsupfiub.finite
|- ( ph -> B e. Fin )
safesnsupfiub.subset
|- ( ph -> B C_ A )
safesnsupfiub.ordered
|- ( ph -> R Or A )
safesnsupfiub.ub
|- ( ph -> A. x e. B A. y e. C x R y )
Assertion safesnsupfiub
|- ( ph -> A. x e. if ( O ~< B , { sup ( B , A , R ) } , B ) A. y e. C x R y )

Proof

Step Hyp Ref Expression
1 safesnsupfiub.small
 |-  ( ph -> ( O = (/) \/ O = 1o ) )
2 safesnsupfiub.finite
 |-  ( ph -> B e. Fin )
3 safesnsupfiub.subset
 |-  ( ph -> B C_ A )
4 safesnsupfiub.ordered
 |-  ( ph -> R Or A )
5 safesnsupfiub.ub
 |-  ( ph -> A. x e. B A. y e. C x R y )
6 1 2 3 4 safesnsupfiss
 |-  ( ph -> if ( O ~< B , { sup ( B , A , R ) } , B ) C_ B )
7 6 sseld
 |-  ( ph -> ( x e. if ( O ~< B , { sup ( B , A , R ) } , B ) -> x e. B ) )
8 7 imim1d
 |-  ( ph -> ( ( x e. B -> A. y e. C x R y ) -> ( x e. if ( O ~< B , { sup ( B , A , R ) } , B ) -> A. y e. C x R y ) ) )
9 8 ralimdv2
 |-  ( ph -> ( A. x e. B A. y e. C x R y -> A. x e. if ( O ~< B , { sup ( B , A , R ) } , B ) A. y e. C x R y ) )
10 5 9 mpd
 |-  ( ph -> A. x e. if ( O ~< B , { sup ( B , A , R ) } , B ) A. y e. C x R y )