| Step | Hyp | Ref | Expression | 
						
							| 1 |  | safesnsupfiss.small |  |-  ( ph -> ( O = (/) \/ O = 1o ) ) | 
						
							| 2 |  | safesnsupfiss.finite |  |-  ( ph -> B e. Fin ) | 
						
							| 3 |  | safesnsupfiss.subset |  |-  ( ph -> B C_ A ) | 
						
							| 4 |  | safesnsupfiss.ordered |  |-  ( ph -> R Or A ) | 
						
							| 5 |  | elif |  |-  ( x e. if ( O ~< B , { sup ( B , A , R ) } , B ) <-> ( ( O ~< B /\ x e. { sup ( B , A , R ) } ) \/ ( -. O ~< B /\ x e. B ) ) ) | 
						
							| 6 |  | elsni |  |-  ( x e. { sup ( B , A , R ) } -> x = sup ( B , A , R ) ) | 
						
							| 7 |  | simpr |  |-  ( ( ( ph /\ O ~< B ) /\ x = sup ( B , A , R ) ) -> x = sup ( B , A , R ) ) | 
						
							| 8 | 4 | adantr |  |-  ( ( ph /\ O ~< B ) -> R Or A ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ O ~< B ) -> B e. Fin ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ O ~< B ) -> O ~< B ) | 
						
							| 11 |  | 0elon |  |-  (/) e. On | 
						
							| 12 |  | eleq1 |  |-  ( O = (/) -> ( O e. On <-> (/) e. On ) ) | 
						
							| 13 | 11 12 | mpbiri |  |-  ( O = (/) -> O e. On ) | 
						
							| 14 |  | 1on |  |-  1o e. On | 
						
							| 15 |  | eleq1 |  |-  ( O = 1o -> ( O e. On <-> 1o e. On ) ) | 
						
							| 16 | 14 15 | mpbiri |  |-  ( O = 1o -> O e. On ) | 
						
							| 17 | 13 16 | jaoi |  |-  ( ( O = (/) \/ O = 1o ) -> O e. On ) | 
						
							| 18 | 1 17 | syl |  |-  ( ph -> O e. On ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ O ~< B ) -> O e. On ) | 
						
							| 20 | 10 19 | sdomne0d |  |-  ( ( ph /\ O ~< B ) -> B =/= (/) ) | 
						
							| 21 | 3 | adantr |  |-  ( ( ph /\ O ~< B ) -> B C_ A ) | 
						
							| 22 |  | fisupcl |  |-  ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , R ) e. B ) | 
						
							| 23 | 8 9 20 21 22 | syl13anc |  |-  ( ( ph /\ O ~< B ) -> sup ( B , A , R ) e. B ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( ph /\ O ~< B ) /\ x = sup ( B , A , R ) ) -> sup ( B , A , R ) e. B ) | 
						
							| 25 | 7 24 | eqeltrd |  |-  ( ( ( ph /\ O ~< B ) /\ x = sup ( B , A , R ) ) -> x e. B ) | 
						
							| 26 | 25 | ex |  |-  ( ( ph /\ O ~< B ) -> ( x = sup ( B , A , R ) -> x e. B ) ) | 
						
							| 27 | 6 26 | syl5 |  |-  ( ( ph /\ O ~< B ) -> ( x e. { sup ( B , A , R ) } -> x e. B ) ) | 
						
							| 28 | 27 | expimpd |  |-  ( ph -> ( ( O ~< B /\ x e. { sup ( B , A , R ) } ) -> x e. B ) ) | 
						
							| 29 |  | simpr |  |-  ( ( -. O ~< B /\ x e. B ) -> x e. B ) | 
						
							| 30 | 29 | a1i |  |-  ( ph -> ( ( -. O ~< B /\ x e. B ) -> x e. B ) ) | 
						
							| 31 | 28 30 | jaod |  |-  ( ph -> ( ( ( O ~< B /\ x e. { sup ( B , A , R ) } ) \/ ( -. O ~< B /\ x e. B ) ) -> x e. B ) ) | 
						
							| 32 | 5 31 | biimtrid |  |-  ( ph -> ( x e. if ( O ~< B , { sup ( B , A , R ) } , B ) -> x e. B ) ) | 
						
							| 33 | 32 | ssrdv |  |-  ( ph -> if ( O ~< B , { sup ( B , A , R ) } , B ) C_ B ) |