Step |
Hyp |
Ref |
Expression |
1 |
|
safesnsupfiss.small |
|- ( ph -> ( O = (/) \/ O = 1o ) ) |
2 |
|
safesnsupfiss.finite |
|- ( ph -> B e. Fin ) |
3 |
|
safesnsupfiss.subset |
|- ( ph -> B C_ A ) |
4 |
|
safesnsupfiss.ordered |
|- ( ph -> R Or A ) |
5 |
|
elif |
|- ( x e. if ( O ~< B , { sup ( B , A , R ) } , B ) <-> ( ( O ~< B /\ x e. { sup ( B , A , R ) } ) \/ ( -. O ~< B /\ x e. B ) ) ) |
6 |
|
elsni |
|- ( x e. { sup ( B , A , R ) } -> x = sup ( B , A , R ) ) |
7 |
|
simpr |
|- ( ( ( ph /\ O ~< B ) /\ x = sup ( B , A , R ) ) -> x = sup ( B , A , R ) ) |
8 |
4
|
adantr |
|- ( ( ph /\ O ~< B ) -> R Or A ) |
9 |
2
|
adantr |
|- ( ( ph /\ O ~< B ) -> B e. Fin ) |
10 |
|
simpr |
|- ( ( ph /\ O ~< B ) -> O ~< B ) |
11 |
|
0elon |
|- (/) e. On |
12 |
|
eleq1 |
|- ( O = (/) -> ( O e. On <-> (/) e. On ) ) |
13 |
11 12
|
mpbiri |
|- ( O = (/) -> O e. On ) |
14 |
|
1on |
|- 1o e. On |
15 |
|
eleq1 |
|- ( O = 1o -> ( O e. On <-> 1o e. On ) ) |
16 |
14 15
|
mpbiri |
|- ( O = 1o -> O e. On ) |
17 |
13 16
|
jaoi |
|- ( ( O = (/) \/ O = 1o ) -> O e. On ) |
18 |
1 17
|
syl |
|- ( ph -> O e. On ) |
19 |
18
|
adantr |
|- ( ( ph /\ O ~< B ) -> O e. On ) |
20 |
10 19
|
sdomne0d |
|- ( ( ph /\ O ~< B ) -> B =/= (/) ) |
21 |
3
|
adantr |
|- ( ( ph /\ O ~< B ) -> B C_ A ) |
22 |
|
fisupcl |
|- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , R ) e. B ) |
23 |
8 9 20 21 22
|
syl13anc |
|- ( ( ph /\ O ~< B ) -> sup ( B , A , R ) e. B ) |
24 |
23
|
adantr |
|- ( ( ( ph /\ O ~< B ) /\ x = sup ( B , A , R ) ) -> sup ( B , A , R ) e. B ) |
25 |
7 24
|
eqeltrd |
|- ( ( ( ph /\ O ~< B ) /\ x = sup ( B , A , R ) ) -> x e. B ) |
26 |
25
|
ex |
|- ( ( ph /\ O ~< B ) -> ( x = sup ( B , A , R ) -> x e. B ) ) |
27 |
6 26
|
syl5 |
|- ( ( ph /\ O ~< B ) -> ( x e. { sup ( B , A , R ) } -> x e. B ) ) |
28 |
27
|
expimpd |
|- ( ph -> ( ( O ~< B /\ x e. { sup ( B , A , R ) } ) -> x e. B ) ) |
29 |
|
simpr |
|- ( ( -. O ~< B /\ x e. B ) -> x e. B ) |
30 |
29
|
a1i |
|- ( ph -> ( ( -. O ~< B /\ x e. B ) -> x e. B ) ) |
31 |
28 30
|
jaod |
|- ( ph -> ( ( ( O ~< B /\ x e. { sup ( B , A , R ) } ) \/ ( -. O ~< B /\ x e. B ) ) -> x e. B ) ) |
32 |
5 31
|
biimtrid |
|- ( ph -> ( x e. if ( O ~< B , { sup ( B , A , R ) } , B ) -> x e. B ) ) |
33 |
32
|
ssrdv |
|- ( ph -> if ( O ~< B , { sup ( B , A , R ) } , B ) C_ B ) |