| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomne0d.a |
|- ( ph -> B ~< A ) |
| 2 |
|
sdomne0d.b |
|- ( ph -> B e. V ) |
| 3 |
|
breq1 |
|- ( B = (/) -> ( B ~< A <-> (/) ~< A ) ) |
| 4 |
3
|
biimpd |
|- ( B = (/) -> ( B ~< A -> (/) ~< A ) ) |
| 5 |
4
|
a1i |
|- ( B e. V -> ( B = (/) -> ( B ~< A -> (/) ~< A ) ) ) |
| 6 |
|
0sdomg |
|- ( B e. V -> ( (/) ~< B <-> B =/= (/) ) ) |
| 7 |
|
sdomtr |
|- ( ( (/) ~< B /\ B ~< A ) -> (/) ~< A ) |
| 8 |
7
|
ex |
|- ( (/) ~< B -> ( B ~< A -> (/) ~< A ) ) |
| 9 |
6 8
|
biimtrrdi |
|- ( B e. V -> ( B =/= (/) -> ( B ~< A -> (/) ~< A ) ) ) |
| 10 |
5 9
|
pm2.61dne |
|- ( B e. V -> ( B ~< A -> (/) ~< A ) ) |
| 11 |
2 10
|
syl |
|- ( ph -> ( B ~< A -> (/) ~< A ) ) |
| 12 |
|
relsdom |
|- Rel ~< |
| 13 |
12
|
brrelex2i |
|- ( (/) ~< A -> A e. _V ) |
| 14 |
|
0sdomg |
|- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
| 15 |
13 14
|
syl |
|- ( (/) ~< A -> ( (/) ~< A <-> A =/= (/) ) ) |
| 16 |
15
|
ibi |
|- ( (/) ~< A -> A =/= (/) ) |
| 17 |
11 16
|
syl6 |
|- ( ph -> ( B ~< A -> A =/= (/) ) ) |
| 18 |
1 17
|
mpd |
|- ( ph -> A =/= (/) ) |