| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomne0d.a |  |-  ( ph -> B ~< A ) | 
						
							| 2 |  | sdomne0d.b |  |-  ( ph -> B e. V ) | 
						
							| 3 |  | breq1 |  |-  ( B = (/) -> ( B ~< A <-> (/) ~< A ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( B = (/) -> ( B ~< A -> (/) ~< A ) ) | 
						
							| 5 | 4 | a1i |  |-  ( B e. V -> ( B = (/) -> ( B ~< A -> (/) ~< A ) ) ) | 
						
							| 6 |  | 0sdomg |  |-  ( B e. V -> ( (/) ~< B <-> B =/= (/) ) ) | 
						
							| 7 |  | sdomtr |  |-  ( ( (/) ~< B /\ B ~< A ) -> (/) ~< A ) | 
						
							| 8 | 7 | ex |  |-  ( (/) ~< B -> ( B ~< A -> (/) ~< A ) ) | 
						
							| 9 | 6 8 | biimtrrdi |  |-  ( B e. V -> ( B =/= (/) -> ( B ~< A -> (/) ~< A ) ) ) | 
						
							| 10 | 5 9 | pm2.61dne |  |-  ( B e. V -> ( B ~< A -> (/) ~< A ) ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> ( B ~< A -> (/) ~< A ) ) | 
						
							| 12 |  | relsdom |  |-  Rel ~< | 
						
							| 13 | 12 | brrelex2i |  |-  ( (/) ~< A -> A e. _V ) | 
						
							| 14 |  | 0sdomg |  |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( (/) ~< A -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 16 | 15 | ibi |  |-  ( (/) ~< A -> A =/= (/) ) | 
						
							| 17 | 11 16 | syl6 |  |-  ( ph -> ( B ~< A -> A =/= (/) ) ) | 
						
							| 18 | 1 17 | mpd |  |-  ( ph -> A =/= (/) ) |