Metamath Proof Explorer


Theorem sdomne0d

Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024)

Ref Expression
Hypotheses sdomne0d.a ( 𝜑𝐵𝐴 )
sdomne0d.b ( 𝜑𝐵𝑉 )
Assertion sdomne0d ( 𝜑𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 sdomne0d.a ( 𝜑𝐵𝐴 )
2 sdomne0d.b ( 𝜑𝐵𝑉 )
3 breq1 ( 𝐵 = ∅ → ( 𝐵𝐴 ↔ ∅ ≺ 𝐴 ) )
4 3 biimpd ( 𝐵 = ∅ → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
5 4 a1i ( 𝐵𝑉 → ( 𝐵 = ∅ → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) ) )
6 0sdomg ( 𝐵𝑉 → ( ∅ ≺ 𝐵𝐵 ≠ ∅ ) )
7 sdomtr ( ( ∅ ≺ 𝐵𝐵𝐴 ) → ∅ ≺ 𝐴 )
8 7 ex ( ∅ ≺ 𝐵 → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
9 6 8 biimtrrdi ( 𝐵𝑉 → ( 𝐵 ≠ ∅ → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) ) )
10 5 9 pm2.61dne ( 𝐵𝑉 → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
11 2 10 syl ( 𝜑 → ( 𝐵𝐴 → ∅ ≺ 𝐴 ) )
12 relsdom Rel ≺
13 12 brrelex2i ( ∅ ≺ 𝐴𝐴 ∈ V )
14 0sdomg ( 𝐴 ∈ V → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
15 13 14 syl ( ∅ ≺ 𝐴 → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
16 15 ibi ( ∅ ≺ 𝐴𝐴 ≠ ∅ )
17 11 16 syl6 ( 𝜑 → ( 𝐵𝐴𝐴 ≠ ∅ ) )
18 1 17 mpd ( 𝜑𝐴 ≠ ∅ )