Step |
Hyp |
Ref |
Expression |
1 |
|
sdomne0d.a |
⊢ ( 𝜑 → 𝐵 ≺ 𝐴 ) |
2 |
|
sdomne0d.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
3 |
|
breq1 |
⊢ ( 𝐵 = ∅ → ( 𝐵 ≺ 𝐴 ↔ ∅ ≺ 𝐴 ) ) |
4 |
3
|
biimpd |
⊢ ( 𝐵 = ∅ → ( 𝐵 ≺ 𝐴 → ∅ ≺ 𝐴 ) ) |
5 |
4
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 = ∅ → ( 𝐵 ≺ 𝐴 → ∅ ≺ 𝐴 ) ) ) |
6 |
|
0sdomg |
⊢ ( 𝐵 ∈ 𝑉 → ( ∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
7 |
|
sdomtr |
⊢ ( ( ∅ ≺ 𝐵 ∧ 𝐵 ≺ 𝐴 ) → ∅ ≺ 𝐴 ) |
8 |
7
|
ex |
⊢ ( ∅ ≺ 𝐵 → ( 𝐵 ≺ 𝐴 → ∅ ≺ 𝐴 ) ) |
9 |
6 8
|
biimtrrdi |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ≠ ∅ → ( 𝐵 ≺ 𝐴 → ∅ ≺ 𝐴 ) ) ) |
10 |
5 9
|
pm2.61dne |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ≺ 𝐴 → ∅ ≺ 𝐴 ) ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → ( 𝐵 ≺ 𝐴 → ∅ ≺ 𝐴 ) ) |
12 |
|
relsdom |
⊢ Rel ≺ |
13 |
12
|
brrelex2i |
⊢ ( ∅ ≺ 𝐴 → 𝐴 ∈ V ) |
14 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
15 |
13 14
|
syl |
⊢ ( ∅ ≺ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
16 |
15
|
ibi |
⊢ ( ∅ ≺ 𝐴 → 𝐴 ≠ ∅ ) |
17 |
11 16
|
syl6 |
⊢ ( 𝜑 → ( 𝐵 ≺ 𝐴 → 𝐴 ≠ ∅ ) ) |
18 |
1 17
|
mpd |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |