| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomne0d.a | ⊢ ( 𝜑  →  𝐵  ≺  𝐴 ) | 
						
							| 2 |  | sdomne0d.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝐵  =  ∅  →  ( 𝐵  ≺  𝐴  ↔  ∅  ≺  𝐴 ) ) | 
						
							| 4 | 3 | biimpd | ⊢ ( 𝐵  =  ∅  →  ( 𝐵  ≺  𝐴  →  ∅  ≺  𝐴 ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  =  ∅  →  ( 𝐵  ≺  𝐴  →  ∅  ≺  𝐴 ) ) ) | 
						
							| 6 |  | 0sdomg | ⊢ ( 𝐵  ∈  𝑉  →  ( ∅  ≺  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 7 |  | sdomtr | ⊢ ( ( ∅  ≺  𝐵  ∧  𝐵  ≺  𝐴 )  →  ∅  ≺  𝐴 ) | 
						
							| 8 | 7 | ex | ⊢ ( ∅  ≺  𝐵  →  ( 𝐵  ≺  𝐴  →  ∅  ≺  𝐴 ) ) | 
						
							| 9 | 6 8 | biimtrrdi | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ≠  ∅  →  ( 𝐵  ≺  𝐴  →  ∅  ≺  𝐴 ) ) ) | 
						
							| 10 | 5 9 | pm2.61dne | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ≺  𝐴  →  ∅  ≺  𝐴 ) ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →  ( 𝐵  ≺  𝐴  →  ∅  ≺  𝐴 ) ) | 
						
							| 12 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 13 | 12 | brrelex2i | ⊢ ( ∅  ≺  𝐴  →  𝐴  ∈  V ) | 
						
							| 14 |  | 0sdomg | ⊢ ( 𝐴  ∈  V  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ∅  ≺  𝐴  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 16 | 15 | ibi | ⊢ ( ∅  ≺  𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 17 | 11 16 | syl6 | ⊢ ( 𝜑  →  ( 𝐵  ≺  𝐴  →  𝐴  ≠  ∅ ) ) | 
						
							| 18 | 1 17 | mpd | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) |