| Step | Hyp | Ref | Expression | 
						
							| 1 |  | safesnsupfiss.small | ⊢ ( 𝜑  →  ( 𝑂  =  ∅  ∨  𝑂  =  1o ) ) | 
						
							| 2 |  | safesnsupfiss.finite | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | safesnsupfiss.subset | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 4 |  | safesnsupfiss.ordered | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 5 |  | elif | ⊢ ( 𝑥  ∈  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  ↔  ( ( 𝑂  ≺  𝐵  ∧  𝑥  ∈  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } )  ∨  ( ¬  𝑂  ≺  𝐵  ∧  𝑥  ∈  𝐵 ) ) ) | 
						
							| 6 |  | elsni | ⊢ ( 𝑥  ∈  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  →  𝑥  =  sup ( 𝐵 ,  𝐴 ,  𝑅 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  ∧  𝑥  =  sup ( 𝐵 ,  𝐴 ,  𝑅 ) )  →  𝑥  =  sup ( 𝐵 ,  𝐴 ,  𝑅 ) ) | 
						
							| 8 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  𝑅  Or  𝐴 ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  𝐵  ∈  Fin ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  𝑂  ≺  𝐵 ) | 
						
							| 11 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑂  =  ∅  →  ( 𝑂  ∈  On  ↔  ∅  ∈  On ) ) | 
						
							| 13 | 11 12 | mpbiri | ⊢ ( 𝑂  =  ∅  →  𝑂  ∈  On ) | 
						
							| 14 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 15 |  | eleq1 | ⊢ ( 𝑂  =  1o  →  ( 𝑂  ∈  On  ↔  1o  ∈  On ) ) | 
						
							| 16 | 14 15 | mpbiri | ⊢ ( 𝑂  =  1o  →  𝑂  ∈  On ) | 
						
							| 17 | 13 16 | jaoi | ⊢ ( ( 𝑂  =  ∅  ∨  𝑂  =  1o )  →  𝑂  ∈  On ) | 
						
							| 18 | 1 17 | syl | ⊢ ( 𝜑  →  𝑂  ∈  On ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  𝑂  ∈  On ) | 
						
							| 20 | 10 19 | sdomne0d | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  𝐵  ≠  ∅ ) | 
						
							| 21 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 22 |  | fisupcl | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  Fin  ∧  𝐵  ≠  ∅  ∧  𝐵  ⊆  𝐴 ) )  →  sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  𝐵 ) | 
						
							| 23 | 8 9 20 21 22 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  𝐵 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  ∧  𝑥  =  sup ( 𝐵 ,  𝐴 ,  𝑅 ) )  →  sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  𝐵 ) | 
						
							| 25 | 7 24 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  ∧  𝑥  =  sup ( 𝐵 ,  𝐴 ,  𝑅 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  ( 𝑥  =  sup ( 𝐵 ,  𝐴 ,  𝑅 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 27 | 6 26 | syl5 | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  ( 𝑥  ∈  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  →  𝑥  ∈  𝐵 ) ) | 
						
							| 28 | 27 | expimpd | ⊢ ( 𝜑  →  ( ( 𝑂  ≺  𝐵  ∧  𝑥  ∈  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ¬  𝑂  ≺  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  ( ( ¬  𝑂  ≺  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 31 | 28 30 | jaod | ⊢ ( 𝜑  →  ( ( ( 𝑂  ≺  𝐵  ∧  𝑥  ∈  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } )  ∨  ( ¬  𝑂  ≺  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 32 | 5 31 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 33 | 32 | ssrdv | ⊢ ( 𝜑  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  ⊆  𝐵 ) |