Step |
Hyp |
Ref |
Expression |
1 |
|
safesnsupfiss.small |
⊢ ( 𝜑 → ( 𝑂 = ∅ ∨ 𝑂 = 1o ) ) |
2 |
|
safesnsupfiss.finite |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
safesnsupfiss.subset |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
4 |
|
safesnsupfiss.ordered |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
5 |
|
elif |
⊢ ( 𝑥 ∈ if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ↔ ( ( 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ { sup ( 𝐵 , 𝐴 , 𝑅 ) } ) ∨ ( ¬ 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) |
6 |
|
elsni |
⊢ ( 𝑥 ∈ { sup ( 𝐵 , 𝐴 , 𝑅 ) } → 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) ) |
7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) ∧ 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) ) → 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → 𝑅 Or 𝐴 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → 𝐵 ∈ Fin ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → 𝑂 ≺ 𝐵 ) |
11 |
|
0elon |
⊢ ∅ ∈ On |
12 |
|
eleq1 |
⊢ ( 𝑂 = ∅ → ( 𝑂 ∈ On ↔ ∅ ∈ On ) ) |
13 |
11 12
|
mpbiri |
⊢ ( 𝑂 = ∅ → 𝑂 ∈ On ) |
14 |
|
1on |
⊢ 1o ∈ On |
15 |
|
eleq1 |
⊢ ( 𝑂 = 1o → ( 𝑂 ∈ On ↔ 1o ∈ On ) ) |
16 |
14 15
|
mpbiri |
⊢ ( 𝑂 = 1o → 𝑂 ∈ On ) |
17 |
13 16
|
jaoi |
⊢ ( ( 𝑂 = ∅ ∨ 𝑂 = 1o ) → 𝑂 ∈ On ) |
18 |
1 17
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ On ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → 𝑂 ∈ On ) |
20 |
10 19
|
sdomne0d |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → 𝐵 ≠ ∅ ) |
21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
22 |
|
fisupcl |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴 ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) |
23 |
8 9 20 21 22
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) ∧ 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) |
25 |
7 24
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) ∧ 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) ) → 𝑥 ∈ 𝐵 ) |
26 |
25
|
ex |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → 𝑥 ∈ 𝐵 ) ) |
27 |
6 26
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → ( 𝑥 ∈ { sup ( 𝐵 , 𝐴 , 𝑅 ) } → 𝑥 ∈ 𝐵 ) ) |
28 |
27
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ { sup ( 𝐵 , 𝐴 , 𝑅 ) } ) → 𝑥 ∈ 𝐵 ) ) |
29 |
|
simpr |
⊢ ( ( ¬ 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
30 |
29
|
a1i |
⊢ ( 𝜑 → ( ( ¬ 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
31 |
28 30
|
jaod |
⊢ ( 𝜑 → ( ( ( 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ { sup ( 𝐵 , 𝐴 , 𝑅 ) } ) ∨ ( ¬ 𝑂 ≺ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) ) |
32 |
5 31
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
33 |
32
|
ssrdv |
⊢ ( 𝜑 → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ⊆ 𝐵 ) |