Metamath Proof Explorer


Theorem safesnsupfiub

Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)

Ref Expression
Hypotheses safesnsupfiub.small ( 𝜑 → ( 𝑂 = ∅ ∨ 𝑂 = 1o ) )
safesnsupfiub.finite ( 𝜑𝐵 ∈ Fin )
safesnsupfiub.subset ( 𝜑𝐵𝐴 )
safesnsupfiub.ordered ( 𝜑𝑅 Or 𝐴 )
safesnsupfiub.ub ( 𝜑 → ∀ 𝑥𝐵𝑦𝐶 𝑥 𝑅 𝑦 )
Assertion safesnsupfiub ( 𝜑 → ∀ 𝑥 ∈ if ( 𝑂𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ∀ 𝑦𝐶 𝑥 𝑅 𝑦 )

Proof

Step Hyp Ref Expression
1 safesnsupfiub.small ( 𝜑 → ( 𝑂 = ∅ ∨ 𝑂 = 1o ) )
2 safesnsupfiub.finite ( 𝜑𝐵 ∈ Fin )
3 safesnsupfiub.subset ( 𝜑𝐵𝐴 )
4 safesnsupfiub.ordered ( 𝜑𝑅 Or 𝐴 )
5 safesnsupfiub.ub ( 𝜑 → ∀ 𝑥𝐵𝑦𝐶 𝑥 𝑅 𝑦 )
6 1 2 3 4 safesnsupfiss ( 𝜑 → if ( 𝑂𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ⊆ 𝐵 )
7 6 sseld ( 𝜑 → ( 𝑥 ∈ if ( 𝑂𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) → 𝑥𝐵 ) )
8 7 imim1d ( 𝜑 → ( ( 𝑥𝐵 → ∀ 𝑦𝐶 𝑥 𝑅 𝑦 ) → ( 𝑥 ∈ if ( 𝑂𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) → ∀ 𝑦𝐶 𝑥 𝑅 𝑦 ) ) )
9 8 ralimdv2 ( 𝜑 → ( ∀ 𝑥𝐵𝑦𝐶 𝑥 𝑅 𝑦 → ∀ 𝑥 ∈ if ( 𝑂𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ∀ 𝑦𝐶 𝑥 𝑅 𝑦 ) )
10 5 9 mpd ( 𝜑 → ∀ 𝑥 ∈ if ( 𝑂𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ∀ 𝑦𝐶 𝑥 𝑅 𝑦 )