| Step | Hyp | Ref | Expression | 
						
							| 1 |  | safesnsupfiub.small | ⊢ ( 𝜑  →  ( 𝑂  =  ∅  ∨  𝑂  =  1o ) ) | 
						
							| 2 |  | safesnsupfiub.finite | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | safesnsupfiub.subset | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 4 |  | safesnsupfiub.ordered | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 5 |  | safesnsupfiub.ub | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐶 𝑥 𝑅 𝑦 ) | 
						
							| 6 | 1 2 3 4 | safesnsupfiss | ⊢ ( 𝜑  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  ⊆  𝐵 ) | 
						
							| 7 | 6 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 8 | 7 | imim1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  →  ∀ 𝑦  ∈  𝐶 𝑥 𝑅 𝑦 )  →  ( 𝑥  ∈  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  →  ∀ 𝑦  ∈  𝐶 𝑥 𝑅 𝑦 ) ) ) | 
						
							| 9 | 8 | ralimdv2 | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐶 𝑥 𝑅 𝑦  →  ∀ 𝑥  ∈  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 ) ∀ 𝑦  ∈  𝐶 𝑥 𝑅 𝑦 ) ) | 
						
							| 10 | 5 9 | mpd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 ) ∀ 𝑦  ∈  𝐶 𝑥 𝑅 𝑦 ) |