Step |
Hyp |
Ref |
Expression |
1 |
|
safesnsupfiub.small |
⊢ ( 𝜑 → ( 𝑂 = ∅ ∨ 𝑂 = 1o ) ) |
2 |
|
safesnsupfiub.finite |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
safesnsupfiub.subset |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
4 |
|
safesnsupfiub.ordered |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
5 |
|
safesnsupfiub.ub |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑥 𝑅 𝑦 ) |
6 |
1 2 3 4
|
safesnsupfiss |
⊢ ( 𝜑 → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ⊆ 𝐵 ) |
7 |
6
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
imim1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 → ∀ 𝑦 ∈ 𝐶 𝑥 𝑅 𝑦 ) → ( 𝑥 ∈ if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) → ∀ 𝑦 ∈ 𝐶 𝑥 𝑅 𝑦 ) ) ) |
9 |
8
|
ralimdv2 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 𝑥 𝑅 𝑦 → ∀ 𝑥 ∈ if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ∀ 𝑦 ∈ 𝐶 𝑥 𝑅 𝑦 ) ) |
10 |
5 9
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ∀ 𝑦 ∈ 𝐶 𝑥 𝑅 𝑦 ) |