Step |
Hyp |
Ref |
Expression |
1 |
|
safesnsupfidom1o.small |
⊢ ( 𝜑 → ( 𝑂 = ∅ ∨ 𝑂 = 1o ) ) |
2 |
|
safesnsupfidom1o.finite |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
iftrue |
⊢ ( 𝑂 ≺ 𝐵 → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) = { sup ( 𝐵 , 𝐴 , 𝑅 ) } ) |
4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) = { sup ( 𝐵 , 𝐴 , 𝑅 ) } ) |
5 |
|
ensn1g |
⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≈ 1o ) |
6 |
|
1on |
⊢ 1o ∈ On |
7 |
|
domrefg |
⊢ ( 1o ∈ On → 1o ≼ 1o ) |
8 |
6 7
|
ax-mp |
⊢ 1o ≼ 1o |
9 |
|
endomtr |
⊢ ( ( { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≈ 1o ∧ 1o ≼ 1o ) → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≼ 1o ) |
10 |
5 8 9
|
sylancl |
⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≼ 1o ) |
11 |
|
snprc |
⊢ ( ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V ↔ { sup ( 𝐵 , 𝐴 , 𝑅 ) } = ∅ ) |
12 |
|
snex |
⊢ { sup ( 𝐵 , 𝐴 , 𝑅 ) } ∈ V |
13 |
|
eqeng |
⊢ ( { sup ( 𝐵 , 𝐴 , 𝑅 ) } ∈ V → ( { sup ( 𝐵 , 𝐴 , 𝑅 ) } = ∅ → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≈ ∅ ) ) |
14 |
12 13
|
ax-mp |
⊢ ( { sup ( 𝐵 , 𝐴 , 𝑅 ) } = ∅ → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≈ ∅ ) |
15 |
11 14
|
sylbi |
⊢ ( ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≈ ∅ ) |
16 |
|
0domg |
⊢ ( 1o ∈ On → ∅ ≼ 1o ) |
17 |
6 16
|
ax-mp |
⊢ ∅ ≼ 1o |
18 |
|
endomtr |
⊢ ( ( { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≈ ∅ ∧ ∅ ≼ 1o ) → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≼ 1o ) |
19 |
15 17 18
|
sylancl |
⊢ ( ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V → { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≼ 1o ) |
20 |
10 19
|
pm2.61i |
⊢ { sup ( 𝐵 , 𝐴 , 𝑅 ) } ≼ 1o |
21 |
4 20
|
eqbrtrdi |
⊢ ( ( 𝜑 ∧ 𝑂 ≺ 𝐵 ) → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ≼ 1o ) |
22 |
|
iffalse |
⊢ ( ¬ 𝑂 ≺ 𝐵 → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) = 𝐵 ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑂 ≺ 𝐵 ) → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) = 𝐵 ) |
24 |
|
0elon |
⊢ ∅ ∈ On |
25 |
|
eleq1 |
⊢ ( 𝑂 = ∅ → ( 𝑂 ∈ On ↔ ∅ ∈ On ) ) |
26 |
24 25
|
mpbiri |
⊢ ( 𝑂 = ∅ → 𝑂 ∈ On ) |
27 |
|
eleq1 |
⊢ ( 𝑂 = 1o → ( 𝑂 ∈ On ↔ 1o ∈ On ) ) |
28 |
6 27
|
mpbiri |
⊢ ( 𝑂 = 1o → 𝑂 ∈ On ) |
29 |
26 28
|
jaoi |
⊢ ( ( 𝑂 = ∅ ∨ 𝑂 = 1o ) → 𝑂 ∈ On ) |
30 |
|
fidomtri |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑂 ∈ On ) → ( 𝐵 ≼ 𝑂 ↔ ¬ 𝑂 ≺ 𝐵 ) ) |
31 |
29 30
|
sylan2 |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑂 = ∅ ∨ 𝑂 = 1o ) ) → ( 𝐵 ≼ 𝑂 ↔ ¬ 𝑂 ≺ 𝐵 ) ) |
32 |
|
breq2 |
⊢ ( 𝑂 = ∅ → ( 𝐵 ≼ 𝑂 ↔ 𝐵 ≼ ∅ ) ) |
33 |
|
domtr |
⊢ ( ( 𝐵 ≼ ∅ ∧ ∅ ≼ 1o ) → 𝐵 ≼ 1o ) |
34 |
17 33
|
mpan2 |
⊢ ( 𝐵 ≼ ∅ → 𝐵 ≼ 1o ) |
35 |
32 34
|
biimtrdi |
⊢ ( 𝑂 = ∅ → ( 𝐵 ≼ 𝑂 → 𝐵 ≼ 1o ) ) |
36 |
|
breq2 |
⊢ ( 𝑂 = 1o → ( 𝐵 ≼ 𝑂 ↔ 𝐵 ≼ 1o ) ) |
37 |
36
|
biimpd |
⊢ ( 𝑂 = 1o → ( 𝐵 ≼ 𝑂 → 𝐵 ≼ 1o ) ) |
38 |
35 37
|
jaoi |
⊢ ( ( 𝑂 = ∅ ∨ 𝑂 = 1o ) → ( 𝐵 ≼ 𝑂 → 𝐵 ≼ 1o ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑂 = ∅ ∨ 𝑂 = 1o ) ) → ( 𝐵 ≼ 𝑂 → 𝐵 ≼ 1o ) ) |
40 |
31 39
|
sylbird |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑂 = ∅ ∨ 𝑂 = 1o ) ) → ( ¬ 𝑂 ≺ 𝐵 → 𝐵 ≼ 1o ) ) |
41 |
2 1 40
|
syl2anc |
⊢ ( 𝜑 → ( ¬ 𝑂 ≺ 𝐵 → 𝐵 ≼ 1o ) ) |
42 |
41
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 𝑂 ≺ 𝐵 ) → 𝐵 ≼ 1o ) |
43 |
23 42
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑂 ≺ 𝐵 ) → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ≼ 1o ) |
44 |
21 43
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝑂 ≺ 𝐵 , { sup ( 𝐵 , 𝐴 , 𝑅 ) } , 𝐵 ) ≼ 1o ) |