| Step | Hyp | Ref | Expression | 
						
							| 1 |  | safesnsupfidom1o.small | ⊢ ( 𝜑  →  ( 𝑂  =  ∅  ∨  𝑂  =  1o ) ) | 
						
							| 2 |  | safesnsupfidom1o.finite | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | iftrue | ⊢ ( 𝑂  ≺  𝐵  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  =  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  =  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ) | 
						
							| 5 |  | ensn1g | ⊢ ( sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  V  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≈  1o ) | 
						
							| 6 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 7 |  | domrefg | ⊢ ( 1o  ∈  On  →  1o  ≼  1o ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ 1o  ≼  1o | 
						
							| 9 |  | endomtr | ⊢ ( ( { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≈  1o  ∧  1o  ≼  1o )  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≼  1o ) | 
						
							| 10 | 5 8 9 | sylancl | ⊢ ( sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  V  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≼  1o ) | 
						
							| 11 |  | snprc | ⊢ ( ¬  sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  V  ↔  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  =  ∅ ) | 
						
							| 12 |  | snex | ⊢ { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ∈  V | 
						
							| 13 |  | eqeng | ⊢ ( { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ∈  V  →  ( { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  =  ∅  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≈  ∅ ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  =  ∅  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≈  ∅ ) | 
						
							| 15 | 11 14 | sylbi | ⊢ ( ¬  sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  V  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≈  ∅ ) | 
						
							| 16 |  | 0domg | ⊢ ( 1o  ∈  On  →  ∅  ≼  1o ) | 
						
							| 17 | 6 16 | ax-mp | ⊢ ∅  ≼  1o | 
						
							| 18 |  | endomtr | ⊢ ( ( { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≈  ∅  ∧  ∅  ≼  1o )  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≼  1o ) | 
						
							| 19 | 15 17 18 | sylancl | ⊢ ( ¬  sup ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  V  →  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≼  1o ) | 
						
							| 20 | 10 19 | pm2.61i | ⊢ { sup ( 𝐵 ,  𝐴 ,  𝑅 ) }  ≼  1o | 
						
							| 21 | 4 20 | eqbrtrdi | ⊢ ( ( 𝜑  ∧  𝑂  ≺  𝐵 )  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  ≼  1o ) | 
						
							| 22 |  | iffalse | ⊢ ( ¬  𝑂  ≺  𝐵  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  =  𝐵 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑂  ≺  𝐵 )  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  =  𝐵 ) | 
						
							| 24 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 25 |  | eleq1 | ⊢ ( 𝑂  =  ∅  →  ( 𝑂  ∈  On  ↔  ∅  ∈  On ) ) | 
						
							| 26 | 24 25 | mpbiri | ⊢ ( 𝑂  =  ∅  →  𝑂  ∈  On ) | 
						
							| 27 |  | eleq1 | ⊢ ( 𝑂  =  1o  →  ( 𝑂  ∈  On  ↔  1o  ∈  On ) ) | 
						
							| 28 | 6 27 | mpbiri | ⊢ ( 𝑂  =  1o  →  𝑂  ∈  On ) | 
						
							| 29 | 26 28 | jaoi | ⊢ ( ( 𝑂  =  ∅  ∨  𝑂  =  1o )  →  𝑂  ∈  On ) | 
						
							| 30 |  | fidomtri | ⊢ ( ( 𝐵  ∈  Fin  ∧  𝑂  ∈  On )  →  ( 𝐵  ≼  𝑂  ↔  ¬  𝑂  ≺  𝐵 ) ) | 
						
							| 31 | 29 30 | sylan2 | ⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝑂  =  ∅  ∨  𝑂  =  1o ) )  →  ( 𝐵  ≼  𝑂  ↔  ¬  𝑂  ≺  𝐵 ) ) | 
						
							| 32 |  | breq2 | ⊢ ( 𝑂  =  ∅  →  ( 𝐵  ≼  𝑂  ↔  𝐵  ≼  ∅ ) ) | 
						
							| 33 |  | domtr | ⊢ ( ( 𝐵  ≼  ∅  ∧  ∅  ≼  1o )  →  𝐵  ≼  1o ) | 
						
							| 34 | 17 33 | mpan2 | ⊢ ( 𝐵  ≼  ∅  →  𝐵  ≼  1o ) | 
						
							| 35 | 32 34 | biimtrdi | ⊢ ( 𝑂  =  ∅  →  ( 𝐵  ≼  𝑂  →  𝐵  ≼  1o ) ) | 
						
							| 36 |  | breq2 | ⊢ ( 𝑂  =  1o  →  ( 𝐵  ≼  𝑂  ↔  𝐵  ≼  1o ) ) | 
						
							| 37 | 36 | biimpd | ⊢ ( 𝑂  =  1o  →  ( 𝐵  ≼  𝑂  →  𝐵  ≼  1o ) ) | 
						
							| 38 | 35 37 | jaoi | ⊢ ( ( 𝑂  =  ∅  ∨  𝑂  =  1o )  →  ( 𝐵  ≼  𝑂  →  𝐵  ≼  1o ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝑂  =  ∅  ∨  𝑂  =  1o ) )  →  ( 𝐵  ≼  𝑂  →  𝐵  ≼  1o ) ) | 
						
							| 40 | 31 39 | sylbird | ⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝑂  =  ∅  ∨  𝑂  =  1o ) )  →  ( ¬  𝑂  ≺  𝐵  →  𝐵  ≼  1o ) ) | 
						
							| 41 | 2 1 40 | syl2anc | ⊢ ( 𝜑  →  ( ¬  𝑂  ≺  𝐵  →  𝐵  ≼  1o ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( 𝜑  ∧  ¬  𝑂  ≺  𝐵 )  →  𝐵  ≼  1o ) | 
						
							| 43 | 23 42 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  𝑂  ≺  𝐵 )  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  ≼  1o ) | 
						
							| 44 | 21 43 | pm2.61dan | ⊢ ( 𝜑  →  if ( 𝑂  ≺  𝐵 ,  { sup ( 𝐵 ,  𝐴 ,  𝑅 ) } ,  𝐵 )  ≼  1o ) |