Metamath Proof Explorer


Theorem safesnsupfidom1o

Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)

Ref Expression
Hypotheses safesnsupfidom1o.small φ O = O = 1 𝑜
safesnsupfidom1o.finite φ B Fin
Assertion safesnsupfidom1o φ if O B sup B A R B 1 𝑜

Proof

Step Hyp Ref Expression
1 safesnsupfidom1o.small φ O = O = 1 𝑜
2 safesnsupfidom1o.finite φ B Fin
3 iftrue O B if O B sup B A R B = sup B A R
4 3 adantl φ O B if O B sup B A R B = sup B A R
5 ensn1g sup B A R V sup B A R 1 𝑜
6 1on 1 𝑜 On
7 domrefg 1 𝑜 On 1 𝑜 1 𝑜
8 6 7 ax-mp 1 𝑜 1 𝑜
9 endomtr sup B A R 1 𝑜 1 𝑜 1 𝑜 sup B A R 1 𝑜
10 5 8 9 sylancl sup B A R V sup B A R 1 𝑜
11 snprc ¬ sup B A R V sup B A R =
12 snex sup B A R V
13 eqeng sup B A R V sup B A R = sup B A R
14 12 13 ax-mp sup B A R = sup B A R
15 11 14 sylbi ¬ sup B A R V sup B A R
16 0domg 1 𝑜 On 1 𝑜
17 6 16 ax-mp 1 𝑜
18 endomtr sup B A R 1 𝑜 sup B A R 1 𝑜
19 15 17 18 sylancl ¬ sup B A R V sup B A R 1 𝑜
20 10 19 pm2.61i sup B A R 1 𝑜
21 4 20 eqbrtrdi φ O B if O B sup B A R B 1 𝑜
22 iffalse ¬ O B if O B sup B A R B = B
23 22 adantl φ ¬ O B if O B sup B A R B = B
24 0elon On
25 eleq1 O = O On On
26 24 25 mpbiri O = O On
27 eleq1 O = 1 𝑜 O On 1 𝑜 On
28 6 27 mpbiri O = 1 𝑜 O On
29 26 28 jaoi O = O = 1 𝑜 O On
30 fidomtri B Fin O On B O ¬ O B
31 29 30 sylan2 B Fin O = O = 1 𝑜 B O ¬ O B
32 breq2 O = B O B
33 domtr B 1 𝑜 B 1 𝑜
34 17 33 mpan2 B B 1 𝑜
35 32 34 biimtrdi O = B O B 1 𝑜
36 breq2 O = 1 𝑜 B O B 1 𝑜
37 36 biimpd O = 1 𝑜 B O B 1 𝑜
38 35 37 jaoi O = O = 1 𝑜 B O B 1 𝑜
39 38 adantl B Fin O = O = 1 𝑜 B O B 1 𝑜
40 31 39 sylbird B Fin O = O = 1 𝑜 ¬ O B B 1 𝑜
41 2 1 40 syl2anc φ ¬ O B B 1 𝑜
42 41 imp φ ¬ O B B 1 𝑜
43 23 42 eqbrtrd φ ¬ O B if O B sup B A R B 1 𝑜
44 21 43 pm2.61dan φ if O B sup B A R B 1 𝑜