| Step | Hyp | Ref | Expression | 
						
							| 1 |  | safesnsupfidom1o.small |  |-  ( ph -> ( O = (/) \/ O = 1o ) ) | 
						
							| 2 |  | safesnsupfidom1o.finite |  |-  ( ph -> B e. Fin ) | 
						
							| 3 |  | iftrue |  |-  ( O ~< B -> if ( O ~< B , { sup ( B , A , R ) } , B ) = { sup ( B , A , R ) } ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ph /\ O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) = { sup ( B , A , R ) } ) | 
						
							| 5 |  | ensn1g |  |-  ( sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~~ 1o ) | 
						
							| 6 |  | 1on |  |-  1o e. On | 
						
							| 7 |  | domrefg |  |-  ( 1o e. On -> 1o ~<_ 1o ) | 
						
							| 8 | 6 7 | ax-mp |  |-  1o ~<_ 1o | 
						
							| 9 |  | endomtr |  |-  ( ( { sup ( B , A , R ) } ~~ 1o /\ 1o ~<_ 1o ) -> { sup ( B , A , R ) } ~<_ 1o ) | 
						
							| 10 | 5 8 9 | sylancl |  |-  ( sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~<_ 1o ) | 
						
							| 11 |  | snprc |  |-  ( -. sup ( B , A , R ) e. _V <-> { sup ( B , A , R ) } = (/) ) | 
						
							| 12 |  | snex |  |-  { sup ( B , A , R ) } e. _V | 
						
							| 13 |  | eqeng |  |-  ( { sup ( B , A , R ) } e. _V -> ( { sup ( B , A , R ) } = (/) -> { sup ( B , A , R ) } ~~ (/) ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( { sup ( B , A , R ) } = (/) -> { sup ( B , A , R ) } ~~ (/) ) | 
						
							| 15 | 11 14 | sylbi |  |-  ( -. sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~~ (/) ) | 
						
							| 16 |  | 0domg |  |-  ( 1o e. On -> (/) ~<_ 1o ) | 
						
							| 17 | 6 16 | ax-mp |  |-  (/) ~<_ 1o | 
						
							| 18 |  | endomtr |  |-  ( ( { sup ( B , A , R ) } ~~ (/) /\ (/) ~<_ 1o ) -> { sup ( B , A , R ) } ~<_ 1o ) | 
						
							| 19 | 15 17 18 | sylancl |  |-  ( -. sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~<_ 1o ) | 
						
							| 20 | 10 19 | pm2.61i |  |-  { sup ( B , A , R ) } ~<_ 1o | 
						
							| 21 | 4 20 | eqbrtrdi |  |-  ( ( ph /\ O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) ~<_ 1o ) | 
						
							| 22 |  | iffalse |  |-  ( -. O ~< B -> if ( O ~< B , { sup ( B , A , R ) } , B ) = B ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ -. O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) = B ) | 
						
							| 24 |  | 0elon |  |-  (/) e. On | 
						
							| 25 |  | eleq1 |  |-  ( O = (/) -> ( O e. On <-> (/) e. On ) ) | 
						
							| 26 | 24 25 | mpbiri |  |-  ( O = (/) -> O e. On ) | 
						
							| 27 |  | eleq1 |  |-  ( O = 1o -> ( O e. On <-> 1o e. On ) ) | 
						
							| 28 | 6 27 | mpbiri |  |-  ( O = 1o -> O e. On ) | 
						
							| 29 | 26 28 | jaoi |  |-  ( ( O = (/) \/ O = 1o ) -> O e. On ) | 
						
							| 30 |  | fidomtri |  |-  ( ( B e. Fin /\ O e. On ) -> ( B ~<_ O <-> -. O ~< B ) ) | 
						
							| 31 | 29 30 | sylan2 |  |-  ( ( B e. Fin /\ ( O = (/) \/ O = 1o ) ) -> ( B ~<_ O <-> -. O ~< B ) ) | 
						
							| 32 |  | breq2 |  |-  ( O = (/) -> ( B ~<_ O <-> B ~<_ (/) ) ) | 
						
							| 33 |  | domtr |  |-  ( ( B ~<_ (/) /\ (/) ~<_ 1o ) -> B ~<_ 1o ) | 
						
							| 34 | 17 33 | mpan2 |  |-  ( B ~<_ (/) -> B ~<_ 1o ) | 
						
							| 35 | 32 34 | biimtrdi |  |-  ( O = (/) -> ( B ~<_ O -> B ~<_ 1o ) ) | 
						
							| 36 |  | breq2 |  |-  ( O = 1o -> ( B ~<_ O <-> B ~<_ 1o ) ) | 
						
							| 37 | 36 | biimpd |  |-  ( O = 1o -> ( B ~<_ O -> B ~<_ 1o ) ) | 
						
							| 38 | 35 37 | jaoi |  |-  ( ( O = (/) \/ O = 1o ) -> ( B ~<_ O -> B ~<_ 1o ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( B e. Fin /\ ( O = (/) \/ O = 1o ) ) -> ( B ~<_ O -> B ~<_ 1o ) ) | 
						
							| 40 | 31 39 | sylbird |  |-  ( ( B e. Fin /\ ( O = (/) \/ O = 1o ) ) -> ( -. O ~< B -> B ~<_ 1o ) ) | 
						
							| 41 | 2 1 40 | syl2anc |  |-  ( ph -> ( -. O ~< B -> B ~<_ 1o ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( ph /\ -. O ~< B ) -> B ~<_ 1o ) | 
						
							| 43 | 23 42 | eqbrtrd |  |-  ( ( ph /\ -. O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) ~<_ 1o ) | 
						
							| 44 | 21 43 | pm2.61dan |  |-  ( ph -> if ( O ~< B , { sup ( B , A , R ) } , B ) ~<_ 1o ) |