Step |
Hyp |
Ref |
Expression |
1 |
|
safesnsupfidom1o.small |
|- ( ph -> ( O = (/) \/ O = 1o ) ) |
2 |
|
safesnsupfidom1o.finite |
|- ( ph -> B e. Fin ) |
3 |
|
iftrue |
|- ( O ~< B -> if ( O ~< B , { sup ( B , A , R ) } , B ) = { sup ( B , A , R ) } ) |
4 |
3
|
adantl |
|- ( ( ph /\ O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) = { sup ( B , A , R ) } ) |
5 |
|
ensn1g |
|- ( sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~~ 1o ) |
6 |
|
1on |
|- 1o e. On |
7 |
|
domrefg |
|- ( 1o e. On -> 1o ~<_ 1o ) |
8 |
6 7
|
ax-mp |
|- 1o ~<_ 1o |
9 |
|
endomtr |
|- ( ( { sup ( B , A , R ) } ~~ 1o /\ 1o ~<_ 1o ) -> { sup ( B , A , R ) } ~<_ 1o ) |
10 |
5 8 9
|
sylancl |
|- ( sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~<_ 1o ) |
11 |
|
snprc |
|- ( -. sup ( B , A , R ) e. _V <-> { sup ( B , A , R ) } = (/) ) |
12 |
|
snex |
|- { sup ( B , A , R ) } e. _V |
13 |
|
eqeng |
|- ( { sup ( B , A , R ) } e. _V -> ( { sup ( B , A , R ) } = (/) -> { sup ( B , A , R ) } ~~ (/) ) ) |
14 |
12 13
|
ax-mp |
|- ( { sup ( B , A , R ) } = (/) -> { sup ( B , A , R ) } ~~ (/) ) |
15 |
11 14
|
sylbi |
|- ( -. sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~~ (/) ) |
16 |
|
0domg |
|- ( 1o e. On -> (/) ~<_ 1o ) |
17 |
6 16
|
ax-mp |
|- (/) ~<_ 1o |
18 |
|
endomtr |
|- ( ( { sup ( B , A , R ) } ~~ (/) /\ (/) ~<_ 1o ) -> { sup ( B , A , R ) } ~<_ 1o ) |
19 |
15 17 18
|
sylancl |
|- ( -. sup ( B , A , R ) e. _V -> { sup ( B , A , R ) } ~<_ 1o ) |
20 |
10 19
|
pm2.61i |
|- { sup ( B , A , R ) } ~<_ 1o |
21 |
4 20
|
eqbrtrdi |
|- ( ( ph /\ O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) ~<_ 1o ) |
22 |
|
iffalse |
|- ( -. O ~< B -> if ( O ~< B , { sup ( B , A , R ) } , B ) = B ) |
23 |
22
|
adantl |
|- ( ( ph /\ -. O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) = B ) |
24 |
|
0elon |
|- (/) e. On |
25 |
|
eleq1 |
|- ( O = (/) -> ( O e. On <-> (/) e. On ) ) |
26 |
24 25
|
mpbiri |
|- ( O = (/) -> O e. On ) |
27 |
|
eleq1 |
|- ( O = 1o -> ( O e. On <-> 1o e. On ) ) |
28 |
6 27
|
mpbiri |
|- ( O = 1o -> O e. On ) |
29 |
26 28
|
jaoi |
|- ( ( O = (/) \/ O = 1o ) -> O e. On ) |
30 |
|
fidomtri |
|- ( ( B e. Fin /\ O e. On ) -> ( B ~<_ O <-> -. O ~< B ) ) |
31 |
29 30
|
sylan2 |
|- ( ( B e. Fin /\ ( O = (/) \/ O = 1o ) ) -> ( B ~<_ O <-> -. O ~< B ) ) |
32 |
|
breq2 |
|- ( O = (/) -> ( B ~<_ O <-> B ~<_ (/) ) ) |
33 |
|
domtr |
|- ( ( B ~<_ (/) /\ (/) ~<_ 1o ) -> B ~<_ 1o ) |
34 |
17 33
|
mpan2 |
|- ( B ~<_ (/) -> B ~<_ 1o ) |
35 |
32 34
|
syl6bi |
|- ( O = (/) -> ( B ~<_ O -> B ~<_ 1o ) ) |
36 |
|
breq2 |
|- ( O = 1o -> ( B ~<_ O <-> B ~<_ 1o ) ) |
37 |
36
|
biimpd |
|- ( O = 1o -> ( B ~<_ O -> B ~<_ 1o ) ) |
38 |
35 37
|
jaoi |
|- ( ( O = (/) \/ O = 1o ) -> ( B ~<_ O -> B ~<_ 1o ) ) |
39 |
38
|
adantl |
|- ( ( B e. Fin /\ ( O = (/) \/ O = 1o ) ) -> ( B ~<_ O -> B ~<_ 1o ) ) |
40 |
31 39
|
sylbird |
|- ( ( B e. Fin /\ ( O = (/) \/ O = 1o ) ) -> ( -. O ~< B -> B ~<_ 1o ) ) |
41 |
2 1 40
|
syl2anc |
|- ( ph -> ( -. O ~< B -> B ~<_ 1o ) ) |
42 |
41
|
imp |
|- ( ( ph /\ -. O ~< B ) -> B ~<_ 1o ) |
43 |
23 42
|
eqbrtrd |
|- ( ( ph /\ -. O ~< B ) -> if ( O ~< B , { sup ( B , A , R ) } , B ) ~<_ 1o ) |
44 |
21 43
|
pm2.61dan |
|- ( ph -> if ( O ~< B , { sup ( B , A , R ) } , B ) ~<_ 1o ) |